These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8654380)

  • 21. Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes.
    Karimi R; Pavlov MY; Heurgué-Hamard V; Buckingham RH; Ehrenberg M
    J Mol Biol; 1998 Aug; 281(2):241-52. PubMed ID: 9698545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase.
    Dutka S; Meinnel T; Lazennec C; Mechulam Y; Blanquet S
    Nucleic Acids Res; 1993 Aug; 21(17):4025-30. PubMed ID: 7690473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein.
    Tisné C; Roques BP; Dardel F
    J Mol Biol; 2001 Feb; 306(3):443-54. PubMed ID: 11178904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of thermosensitive peptidyl-tRNA hydrolase mutation in Escherichia coli by gene duplication.
    Menez J; Remy E; Buckingham RH
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1581-1589. PubMed ID: 11390689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptidyl-tRNA hydrolase is involved in lambda inhibition of host protein synthesis.
    García-Villegas MR; De La Vega FM; Galindo JM; Segura M; Buckingham RH; Guarneros G
    EMBO J; 1991 Nov; 10(11):3549-55. PubMed ID: 1833189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of minigenes in the bacteriophage lambda chromosome.
    Oviedo NA; Salgado H; Collado-Vides J; Guarneros G
    Gene; 2004 Mar; 329():115-24. PubMed ID: 15033534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural premature protein synthesis termination can be reduced in Escherichia coli by decreased translation rates.
    Atherly AG
    Mol Gen Genet; 1979 Oct; 175(3):305-11. PubMed ID: 392230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional analysis of the gene encoding peptidyl-tRNA hydrolase in Escherichia coli.
    Cruz-Vera LR; Galindo JM; Guarneros G
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3457-3466. PubMed ID: 12427937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation of peptidyl tRNA is lethal to Escherichia coli.
    Menninger JR
    J Bacteriol; 1979 Jan; 137(1):694-6. PubMed ID: 368041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of essential bacterial peptidyl-tRNA hydrolase activity by tropical plant extracts.
    McFeeters H; Gilbert MJ; Thompson RM; Setzer WN; Cruz-Vera LR; McFeeters RL
    Nat Prod Commun; 2012 Aug; 7(8):1107-10. PubMed ID: 22978241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of active/binding site residues of peptidyl-tRNA hydrolase using biophysical and computational studies.
    Kulandaisamy R; Kushwaha T; Kumar V; De S; Kumar S; Upadhyay SK; Kumar M; Inampudi KK
    Int J Biol Macromol; 2020 Sep; 159():877-885. PubMed ID: 32445815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA-binding site of Escherichia coli peptidyl-tRNA hydrolase.
    Giorgi L; Bontems F; Fromant M; Aubard C; Blanquet S; Plateau P
    J Biol Chem; 2011 Nov; 286(45):39585-94. PubMed ID: 21930710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces.
    Ostheimer GJ; Hadjivassiliou H; Kloer DP; Barkan A; Matthews BW
    J Mol Biol; 2005 Jan; 345(1):51-68. PubMed ID: 15567410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase.
    Ito K; Murakami R; Mochizuki M; Qi H; Shimizu Y; Miura K; Ueda T; Uchiumi T
    Nucleic Acids Res; 2012 Nov; 40(20):10521-31. PubMed ID: 22923517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of protein synthesis by minigene expression.
    Hernández J; Ontiveros C; Valadez JG; Buckingham RH; Guarneros G
    Biochimie; 1997 Sep; 79(8):527-31. PubMed ID: 9451455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis.
    Das G; Varshney U
    Microbiology (Reading); 2006 Aug; 152(Pt 8):2191-2195. PubMed ID: 16849786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The length of the 5' leader of Escherichia coli tRNA precursors influences bacterial growth.
    Fredrik Pettersson BM; Ardell DH; Kirsebom LA
    J Mol Biol; 2005 Aug; 351(1):9-15. PubMed ID: 16002088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi.
    Ambrogelly A; Frugier M; Ibba M; Söll D; Giegé R
    FEBS Lett; 2005 May; 579(12):2629-34. PubMed ID: 15862301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor site for the 5'-phosphate of elongator tRNAs governs substrate selection by peptidyl-tRNA hydrolase.
    Fromant M; Plateau P; Schmitt E; Mechulam Y; Blanquet S
    Biochemistry; 1999 Apr; 38(16):4982-7. PubMed ID: 10213600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.