These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8654888)

  • 41. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic.
    Ziche M; Maglione D; Ribatti D; Morbidelli L; Lago CT; Battisti M; Paoletti I; Barra A; Tucci M; Parise G; Vincenti V; Granger HJ; Viglietto G; Persico MG
    Lab Invest; 1997 Apr; 76(4):517-31. PubMed ID: 9111514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.
    Farnum CE; Turgai J; Wilsman NJ
    J Orthop Res; 1990 Sep; 8(5):750-63. PubMed ID: 2201757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cultured tumor cells produce chemotactic factors specific for endothelial cells: a possible mechanism for tumor-induced angiogenesis.
    Seppä ST; Seppä HE; Liotta LA; Glaser BM; Martin GR; Schiffmann E
    Invasion Metastasis; 1983; 3(3):139-50. PubMed ID: 6203869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Reorganization of growth-plate-like tissue by isolated chondrocytes in culture].
    Yan WQ; Tong MH; Yu L; Yu T; Hou LZ; Yang TS; Gao G; Zhang JY
    Shi Yan Sheng Wu Xue Bao; 1994 Jun; 27(2):193-203. PubMed ID: 7976058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification.
    Taniguchi N; Yoshida K; Ito T; Tsuda M; Mishima Y; Furumatsu T; Ronfani L; Abeyama K; Kawahara K; Komiya S; Maruyama I; Lotz M; Bianchi ME; Asahara H
    Mol Cell Biol; 2007 Aug; 27(16):5650-63. PubMed ID: 17548469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hypertrophic chondrocytes in the rabbit growth plate can proliferate and differentiate into osteogenic cells when capillary invasion is interposed by a membrane filter.
    Enishi T; Yukata K; Takahashi M; Sato R; Sairyo K; Yasui N
    PLoS One; 2014; 9(8):e104638. PubMed ID: 25121501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage.
    Farnum CE; Wilsman NJ
    Anat Rec; 1987 Nov; 219(3):221-32. PubMed ID: 3425941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed.
    Hunter WL; Arsenault AL; Hodsman AB
    Anat Rec; 1991 Apr; 229(4):453-61. PubMed ID: 1710878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate.
    Shapiro IM; Adams CS; Freeman T; Srinivas V
    Birth Defects Res C Embryo Today; 2005 Dec; 75(4):330-9. PubMed ID: 16425255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initiation of the bony epiphysis in long bones: chronology of interactions between the vascular system and the chondrocytes.
    Roach HI; Baker JE; Clarke NM
    J Bone Miner Res; 1998 Jun; 13(6):950-61. PubMed ID: 9626626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunohistochemical localization of interleukin 1 in human growth cartilage.
    Yamashita F; Sakakida K; Kusuzaki K; Takeshita H; Kuzuhara A
    Nihon Seikeigeka Gakkai Zasshi; 1989 May; 63(5):562-8. PubMed ID: 2794632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of vascularization in the chondroepiphysis of the rabbit.
    Ganey TM; Love SM; Ogden JA
    J Orthop Res; 1992 Jul; 10(4):496-510. PubMed ID: 1613625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Growth cartilage in rabbits. Culture and cryopreservation].
    Mottet V
    Chirurgie; 1994-1995; 120(2):100-3. PubMed ID: 7729215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. c-Raf promotes angiogenesis during normal growth plate maturation.
    Liu ES; Raimann A; Chae BT; Martins JS; Baccarini M; Demay MB
    Development; 2016 Jan; 143(2):348-55. PubMed ID: 26657770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chondrocalcin and the calcification of cartilage. A review.
    Poole AR; Rosenberg LC
    Clin Orthop Relat Res; 1986 Jul; (208):114-8. PubMed ID: 3522018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neutral proteases in regenerating bone.
    Einhorn TA; Majeska RJ
    Clin Orthop Relat Res; 1991 Jan; (262):286-97. PubMed ID: 1845859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth and motility of microvascular endothelium are modulated by the relative concentration of gangliosides in the medium.
    Alessandri G; De Cristan G; Ziche M; Cappa AP; Gullino PM
    J Cell Physiol; 1992 Apr; 151(1):23-8. PubMed ID: 1560045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Collagenase and gelatinase production by calcifying growth plate chondrocytes.
    Brown RA; Kayser M; McLaughlin B; Weiss JB
    Exp Cell Res; 1993 Sep; 208(1):1-9. PubMed ID: 8395392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative study of neutral proteoglycanase activity by growth plate zone.
    Ehrlich MG; Tebor GB; Armstrong AL; Mankin HJ
    J Orthop Res; 1985; 3(3):269-76. PubMed ID: 2411893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of endothelial cell stimulating angiogenesis factor (ESAF) by chondrocytes during in vitro cartilage calcification.
    McFarland CD; Brown RA; McLaughlin B; Ali SY; Weiss JB
    Bone Miner; 1990 Dec; 11(3):319-33. PubMed ID: 1707699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.