These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8654916)

  • 41. PCR-based identification of wheat genomes.
    Sallares R; Allaby RG; Brown TA
    Mol Ecol; 1995 Aug; 4(4):509-14. PubMed ID: 8574448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of transposition in dispersion of tandem repeat sequences (TrsA) in rice genomes.
    Ohtsubo H; Ohtsubo E
    Mol Gen Genet; 1994 Nov; 245(4):449-55. PubMed ID: 7808394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. T-DNA integrations in a new family of repetitive elements of Nicotiana tabacum.
    Suter-Crazzolara C; Brzobohaty B; Gazdova B; Schell J; Reiss B
    J Mol Evol; 1995 Oct; 41(4):498-504. PubMed ID: 7563138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic organization and evolution of the soybean SB92 satellite sequence.
    Vahedian M; Shi L; Zhu T; Okimoto R; Danna K; Keim P
    Plant Mol Biol; 1995 Nov; 29(4):857-62. PubMed ID: 8541510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular diversity of the 5S rRNA gene in Kengyilia alatavica (Drobov) J.L. Yang, Yen & Baum (Poaceae:Triticeae): potential genomic assignment of different rDNA units.
    Baum BR; Bailey LG
    Genome; 1997 Apr; 40(2):215-28. PubMed ID: 9134703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The genetic diversity of Mycobacterium tuberculosis strains in Thailand studied by amplification of DNA segments containing direct repetitive sequences.
    Namwat W; Luangsuk P; Palittapongarnpim P
    Int J Tuberc Lung Dis; 1998 Feb; 2(2):153-9. PubMed ID: 9562126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular cloning and characterization of contiguously located repetitive and single copy DNA sequences of Mycobacterium tuberculosis: development of PCR-based diagnostic assay.
    Reddi PP; Talwar GP; Khandekar PS
    Int J Lepr Other Mycobact Dis; 1993 Jun; 61(2):227-35. PubMed ID: 8371032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton.
    Zhao XP; Si Y; Hanson RE; Crane CF; Price HJ; Stelly DM; Wendel JF; Paterson AH
    Genome Res; 1998 May; 8(5):479-92. PubMed ID: 9582192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Divergence of unique and repetitive sequences in the genomes of fish].
    Kedrova OS; Vladychenskaia NS; Antonov AS
    Mol Biol (Mosk); 1980; 14(5):1001-12. PubMed ID: 7421812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of Acetyl-CoA carboxylase 1 (Acc-1) gene diversity among different Triticeae genomes.
    Wu D; Sun G; Yang L; Hu Q
    Gene; 2014 Aug; 546(1):11-5. PubMed ID: 24865934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new family of repetitive nucleotide sequences is restricted to the genus Zea.
    Raz R; Puigdomènech P; Martínez-Izquierdo JA
    Gene; 1991 Sep; 105(2):151-8. PubMed ID: 1937012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa.
    Chung SM; Staub JE
    Theor Appl Genet; 2003 Aug; 107(4):757-67. PubMed ID: 12827249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome.
    Minami M; Poussin K; Bréchot C; Paterlini P
    Genomics; 1995 Sep; 29(2):403-8. PubMed ID: 8666388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat.
    Kong XY; Gu YQ; You FM; Dubcovsky J; Anderson OD
    Plant Mol Biol; 2004 Jan; 54(1):55-69. PubMed ID: 15159634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean.
    Pich U; Houben A; Fuchs J; Meister A; Schubert I
    Mol Gen Genet; 1994 Apr; 243(2):173-7. PubMed ID: 8177213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification.
    Izsvák Z; Ivics Z; Shimoda N; Mohn D; Okamoto H; Hackett PB
    J Mol Evol; 1999 Jan; 48(1):13-21. PubMed ID: 9873073
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Possible repetitive DNA markers for Eusorghum and Parasorghum and their potential use in examining phylogenetic hypotheses on the origin of Sorghum species.
    Hoang-Tang ; Dube SK; Liang GH; Kung SD
    Genome; 1991 Apr; 34(2):241-50. PubMed ID: 2055449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.