BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8655399)

  • 41. Structure of the penis in the fruit bat Rousettus aegyptiacus (Megachiroptera).
    Madkour G
    J Mammal; 1976 Nov; 57(4):769-71. PubMed ID: 1003048
    [No Abstract]   [Full Text] [Related]  

  • 42. Fine structure of the vomeronasal neuroepithelium of bats: a comparative study.
    Bhatnagar KP; Matulionis DH; Breipohl W
    Acta Anat (Basel); 1982; 112(2):158-77. PubMed ID: 7102243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The existence of the vomeronasal organ in postnatal chimpanzees and evidence for its homology with that of humans.
    Smith TD; Siegel MI; Bonar CJ; Bhatnagar KP; Mooney MP; Burrows AM; Smith MA; Maico LM
    J Anat; 2001 Jan; 198(Pt 1):77-82. PubMed ID: 11215770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nose surgery and the vomeronasal organ.
    García-Velasco J; García-Casas S
    Aesthetic Plast Surg; 1995; 19(5):451-4. PubMed ID: 8526162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vomeronasal organs and nerves of Jacobson in the human fetus.
    Nakashima T; Kimmelman CP; Snow JB
    Acta Otolaryngol; 1985; 99(3-4):266-71. PubMed ID: 4013718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The human vomeronasal organ: prenatal developmental stages and distribution of luteinizing hormone-releasing hormone.
    Kjaer I; Fischer Hansen B
    Eur J Oral Sci; 1996 Feb; 104(1):34-40. PubMed ID: 8653495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The clinical significance of the human vomeronasal organ.
    Bruintjes TD; Bleys RLAW
    Surg Radiol Anat; 2023 Apr; 45(4):457-460. PubMed ID: 36759365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ontogeny of the nasopalatine duct in primates.
    Shimp KL; Bhatnagar KP; Bonar CJ; Smith TD
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Sep; 274(1):862-9. PubMed ID: 12923897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of lectin reactivity in the vomeronasal organ of human and nonhuman primates.
    Kinzinger JH; Johnson EW; Bhatnagar KP; Bonar CJ; Burrows AM; Mooney MP; Siegel MI; Smith TD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Jun; 284(2):550-60. PubMed ID: 15880783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first.
    O'Brien J; Mariani C; Olson L; Russell AL; Say L; Yoder AD; Hayden TJ
    Mol Phylogenet Evol; 2009 May; 51(2):294-303. PubMed ID: 19249376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals.
    Cretekos CJ; Weatherbee SD; Chen CH; Badwaik NK; Niswander L; Behringer RR; Rasweiler JJ
    Dev Dyn; 2005 Jul; 233(3):721-38. PubMed ID: 15861401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion.
    Knöll B; Schmidt H; Andrews W; Guthrie S; Pini A; Sundaresan V; Drescher U
    Development; 2003 Nov; 130(21):5073-82. PubMed ID: 12954717
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vomeronasal organ and its associated structures in the opossum Monodelphis domestica.
    Poran NS
    Microsc Res Tech; 1998 Dec; 43(6):500-10. PubMed ID: 9880164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Letter: Secretory blebs from the seminal vesicles of the indian fruit bat, Rousettus leschenaulti (Desmarest).
    Gopalakrishna A; Karim KB
    Curr Sci; 1974 Jun; 43(12):383-4. PubMed ID: 4448253
    [No Abstract]   [Full Text] [Related]  

  • 55. Distribution and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Egyptian rousette flying fox, Rousettus aegyptiacus.
    Maseko BC; Bourne JA; Manger PR
    J Chem Neuroanat; 2007 Nov; 34(3-4):108-27. PubMed ID: 17624722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. General organization of the perinatal and adult accessory olfactory bulb in mice.
    Salazar I; Sanchez-Quinteiro P; Cifuentes JM; Fernandez De Troconiz P
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Sep; 288(9):1009-25. PubMed ID: 16892425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Normal embryonic development of the Japanese pipistrelle, Pipistrellus abramus.
    Tokita M
    Zoology (Jena); 2006; 109(2):137-47. PubMed ID: 16616468
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system.
    Winklbauer R; Hausen P
    J Embryol Exp Morphol; 1985 Aug; 88():193-207. PubMed ID: 4078529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ion conductances in supporting cells isolated from the mouse vomeronasal organ.
    Ghiaroni V; Fieni F; Tirindelli R; Pietra P; Bigiani A
    J Neurophysiol; 2003 Jan; 89(1):118-27. PubMed ID: 12522164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae).
    Jermakowicz WJ; Dorsey DA; Brown AL; Wojciechowski K; Giscombe CL; Graves BM; Summers CH; Ten Eyck GR
    J Morphol; 2004 Aug; 261(2):225-48. PubMed ID: 15216526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.