These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Acute extracellular acidification increases nuclear associated protein levels in human melanoma cells during 42 degrees C hyperthermia and enhances cell killing. Han JS; Storck CW; Wachsberger PR; Leeper DB; Berd D; Wahl ML; Coss RA Int J Hyperthermia; 2002; 18(5):404-15. PubMed ID: 12227927 [TBL] [Abstract][Full Text] [Related]
7. Nuclear protein redistribution in heat-shocked cells. Warters RL; Chu GL; Wong RS; Lyons BW; Dewey WC J Cell Physiol; 1993 Feb; 154(2):402-9. PubMed ID: 8381127 [TBL] [Abstract][Full Text] [Related]
8. Hsp27 protects the cytoskeleton and nucleus from the effects of 42 degrees C at pH 6.7 in CHO cells adapted to growth at pH 6.7. Coss RA; Sedar AW; Sistrun SS; Storck CW; Wang PH; Wachsberger PR Int J Hyperthermia; 2002; 18(3):216-32. PubMed ID: 12028638 [TBL] [Abstract][Full Text] [Related]
9. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Arrigo AP; Suhan JP; Welch WJ Mol Cell Biol; 1988 Dec; 8(12):5059-71. PubMed ID: 3072471 [TBL] [Abstract][Full Text] [Related]
10. Identification of two HSP70-related Xenopus oocyte proteins that are capable of recycling across the nuclear envelope. Mandell RB; Feldherr CM J Cell Biol; 1990 Nov; 111(5 Pt 1):1775-83. PubMed ID: 2229173 [TBL] [Abstract][Full Text] [Related]
12. Reduction of levels of nuclear-associated protein in heated cells by cycloheximide, D2O, and thermotolerance. Borrelli MJ; Stafford DM; Rausch CM; Lepock JR; Lee YJ; Corry PM Radiat Res; 1992 Aug; 131(2):204-13. PubMed ID: 1641474 [TBL] [Abstract][Full Text] [Related]
13. Heat-induced changes in nuclear-associated proteins in normal and thermotolerant HeLa cells. Roti Roti JL; Turkel N Radiat Res; 1994 Jul; 139(1):73-81. PubMed ID: 8016311 [TBL] [Abstract][Full Text] [Related]
14. Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Trapani JA; Jans P; Smyth MJ; Froelich CJ; Williams EA; Sutton VR; Jans DA Cell Death Differ; 1998 Jun; 5(6):488-96. PubMed ID: 10200500 [TBL] [Abstract][Full Text] [Related]
15. Protein cross-migration during isolation of nuclei from mixtures of heated and unheated HeLa cells. Roti Roti JL; Higashikubo R; Mace M Radiat Res; 1984 Apr; 98(1):107-14. PubMed ID: 6201947 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a heat shock-induced insoluble complex in the nuclei of cells. Littlewood TD; Hancock DC; Evan GI J Cell Sci; 1987 Aug; 88 ( Pt 1)():65-72. PubMed ID: 3327865 [TBL] [Abstract][Full Text] [Related]
17. Dynamic associations of heterochromatin protein 1 with the nuclear envelope. Kourmouli N; Theodoropoulos PA; Dialynas G; Bakou A; Politou AS; Cowell IG; Singh PB; Georgatos SD EMBO J; 2000 Dec; 19(23):6558-68. PubMed ID: 11101528 [TBL] [Abstract][Full Text] [Related]
18. 70-kDa heat-shock cognate protein colocalizes with karyophilic proteins into the nucleus during their transport in vitro. Okuno Y; Imamoto N; Yoneda Y Exp Cell Res; 1993 May; 206(1):134-42. PubMed ID: 8482354 [TBL] [Abstract][Full Text] [Related]
19. Mechanism(s) of heat killing: accumulation of nascent polypeptides in the nucleus? Lee YJ; Borrelli MJ; Corry PM Biochem Biophys Res Commun; 1991 May; 176(3):1525-31. PubMed ID: 2039528 [TBL] [Abstract][Full Text] [Related]
20. Alterations in nuclear protein mass and macromolecular synthesis following heat shock. Higashikubo R; Roti Roti JL Radiat Res; 1993 May; 134(2):193-201. PubMed ID: 7683819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]