BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8655737)

  • 1. Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation.
    Larsen LB; Benfeldt C; Rasmussen LK; Petersen TE
    J Dairy Res; 1996 Feb; 63(1):119-30. PubMed ID: 8655737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk.
    Moatsou G; Bakopanos C; Katharios D; Katsaros G; Kandarakis I; Taoukis P; Politis I
    J Dairy Res; 2008 Aug; 75(3):262-9. PubMed ID: 18513457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolysis of milk proteins lactosylated in model systems.
    Dalsgaard TK; Nielsen JH; Larsen LB
    Mol Nutr Food Res; 2007 Apr; 51(4):404-14. PubMed ID: 17357984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of procathepsin D in rat milk.
    Benes P; Koelsch G; Dvorak B; Fusek M; Vetvicka V
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Sep; 133(1):113-8. PubMed ID: 12223218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casein retention in curd and loss of casein into whey at chymosin-induced coagulation of milk.
    Hallén E; Lundén A; Allmere T; Andrén A
    J Dairy Res; 2010 Feb; 77(1):71-6. PubMed ID: 19939322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procathepsin D cannot autoactivate to cathepsin D at acid pH.
    Larsen LB; Boisen A; Petersen TE
    FEBS Lett; 1993 Mar; 319(1-2):54-8. PubMed ID: 8454061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profiling of the coagulation of milk proteins induced by chymosin.
    Hsieh JF; Pan PH
    J Agric Food Chem; 2012 Feb; 60(8):2039-45. PubMed ID: 22304647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of procathepsin D from mature cathepsin D by pepstatin affinity chromatography. Autocatalytic proteolysis of the zymogen form of the enzyme.
    Conner GE
    Biochem J; 1989 Oct; 263(2):601-4. PubMed ID: 2512908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of milk proteins and posttranslational modifications on noncoagulating milk from Swedish Red dairy cattle.
    Nilsson K; Buhelt Johansen L; de Koning DJ; Duchemin SI; Stenholdt Hansen M; Stålhammar H; Lindmark-Månsson H; Paulsson M; Fikse WF; Glantz M
    J Dairy Sci; 2020 Aug; 103(8):6858-6868. PubMed ID: 32534931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Casein breakdown in bovine milk by a field strain of Staphylococcus aureus.
    Johansson M; Åkerstedt M; Li S; Zamaratskaia G; Sternesjö Lundh Å
    J Food Prot; 2013 Sep; 76(9):1638-42. PubMed ID: 23992512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of an acid proteinase from Monascus purpureus to reduce antigenicity of bovine milk whey protein.
    Lakshman PL; Tachibana S; Toyama H; Taira T; Suganuma T; Suntornsuk W; Yasuda M
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1485-92. PubMed ID: 21298320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Milk protein fractions strongly affect the patterns of coagulation, curd firming, and syneresis.
    Amalfitano N; Cipolat-Gotet C; Cecchinato A; Malacarne M; Summer A; Bittante G
    J Dairy Sci; 2019 Apr; 102(4):2903-2917. PubMed ID: 30772026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of PhastSystem to the resolution of bovine milk proteins on urea-polyacrylamide gel electrophoresis.
    Van Hekken DL; Thompson MP
    J Dairy Sci; 1992 May; 75(5):1204-10. PubMed ID: 1597574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal inactivation kinetics of bovine cathepsin D.
    Hayes MG; Hurley MJ; Larsen LB; Heegaard CW; Magboul AA; Oliveira JC; McSweeney PL; Kelly AL
    J Dairy Res; 2001 May; 68(2):267-76. PubMed ID: 11504390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of zinc to bovine and human milk proteins.
    Singh H; Flynn A; Fox PF
    J Dairy Res; 1989 May; 56(2):235-48. PubMed ID: 2760297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic variation and posttranslational modification of bovine κ-casein: effects on caseino-macropeptide release during renneting.
    Jensen HB; Pedersen KS; Johansen LB; Poulsen NA; Bakman M; Chatterton DE; Larsen LB
    J Dairy Sci; 2015 Feb; 98(2):747-58. PubMed ID: 25497797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of in vivo digestion of bovine unheated skim-milk proteins in the rat stomach.
    Miranda G; Pelissier JP
    J Dairy Res; 1983 Feb; 50(1):27-36. PubMed ID: 6841734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of beta-lactoglobulin A and B whey protein variants on the rennet-induced gelation of skim milk gels in a model reconstituted skim milk system.
    Meza-Nieto MA; Vallejo-Cordoba B; González-Córdova AF; Félix L; Goycoolea FM
    J Dairy Sci; 2007 Feb; 90(2):582-93. PubMed ID: 17235134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal inactivation of chymosin during cheese manufacture.
    Hayes MG; Oliveira JC; Mcsweeney PL; Kelly AL
    J Dairy Res; 2002 May; 69(2):269-79. PubMed ID: 12222804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows.
    Gustavsson F; Buitenhuis AJ; Johansson M; Bertelsen HP; Glantz M; Poulsen NA; Lindmark Månsson H; Stålhammar H; Larsen LB; Bendixen C; Paulsson M; Andrén A
    J Dairy Sci; 2014; 97(6):3866-77. PubMed ID: 24704225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.