These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8656107)

  • 1. Cardiac responses to premature monophasic and biphasic field stimuli. Results from cell and tissue modeling studies.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Electrocardiol; 1995; 28 Suppl():174-9. PubMed ID: 8656107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the interaction between propagating cardiac waves and monophasic and biphasic field stimuli: the importance of the induced spatial excitatory response.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Cardiovasc Electrophysiol; 1996 Dec; 7(12):1183-96. PubMed ID: 8985807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study.
    Fishler MG; Sobie EA; Thakor NV; Tung L
    Biophys J; 1996 Mar; 70(3):1347-62. PubMed ID: 8785290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postshock potential gradients and dispersion of repolarization in cells stimulated with monophasic and biphasic waveforms.
    Sobie EA; Tung L
    J Cardiovasc Electrophysiol; 1998 Jul; 9(7):743-56. PubMed ID: 9684722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of relatively refractory canine myocardium to monophasic and biphasic shocks.
    Daubert JP; Frazier DW; Wolf PD; Franz MR; Smith WM; Ideker RE
    Circulation; 1991 Dec; 84(6):2522-38. PubMed ID: 1959202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold reduction with biphasic defibrillator waveforms. Role of charge balance.
    Jones JL; Tovar OH
    J Electrocardiol; 1995; 28 Suppl():25-30. PubMed ID: 8656123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation.
    Kwaku KF; Dillon SM
    Circ Res; 1996 Nov; 79(5):957-73. PubMed ID: 8888688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disparate effects of biphasic and monophasic shocks on postshock refractory period dispersion.
    Sims JJ; Miller AW; Ujhelyi MR
    Am J Physiol; 1998 Jun; 274(6):H1943-9. PubMed ID: 9841521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanisms of electrical defibrillation].
    Reek S; Ideker RE
    Herzschrittmacherther Elektrophysiol; 1997 Mar; 8(1):4-14. PubMed ID: 19495673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractory interval after transcardiac shocks during ventricular fibrillation.
    Sweeney RJ; Gill RM; Reid PR
    Circulation; 1996 Dec; 94(11):2947-52. PubMed ID: 8941125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane potential changes caused by monophasic and biphasic shocks.
    Zhou X; Smith WM; Justice RK; Wayland JL; Ideker RE
    Am J Physiol; 1998 Nov; 275(5):H1798-807. PubMed ID: 9815088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of monophasic and biphasic shocks on action potentials during ventricular fibrillation in dogs.
    Zhou X; Wolf PD; Rollins DL; Afework Y; Smith WM; Ideker RE
    Circ Res; 1993 Aug; 73(2):325-34. PubMed ID: 8330375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane potentials during high voltage shocks in ischemic cardiac tissue.
    Holley LK; Knisley SB
    Pacing Clin Electrophysiol; 1997 Jan; 20(1 Pt 2):146-52. PubMed ID: 9121979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of the upper limit of vulnerability is different for monophasic and biphasic shocks: implications for the determination of the defibrillation threshold.
    Behrens S; Li C; Franz MR
    Pacing Clin Electrophysiol; 1997 Sep; 20(9 Pt 1):2179-87. PubMed ID: 9309741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal cardioversion of atrial fibrillation in sheep.
    Cooper RA; Alferness CA; Smith WM; Ideker RE
    Circulation; 1993 May; 87(5):1673-86. PubMed ID: 8491023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength.
    Cates AW; Wolf PD; Hillsley RE; Souza JJ; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1994 Jul; 17(7):1208-17. PubMed ID: 7937226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.