BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 8656209)

  • 21. Biophysical and pharmacological characterization of voltage-dependent Ca2+ channels in neurons isolated from rat nucleus accumbens.
    Churchill D; Macvicar BA
    J Neurophysiol; 1998 Feb; 79(2):635-47. PubMed ID: 9463427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors.
    Wilkinson MF; Barnes S
    J Gen Physiol; 1996 May; 107(5):621-30. PubMed ID: 8740375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions.
    Hernández-Guijo JM; de Pascual R; García AG; Gandía L
    Pflugers Arch; 1998 Jun; 436(1):75-82. PubMed ID: 9560449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Re-evaluation of calcium currents in pre- and postsynaptic neurones of the chick ciliary ganglion.
    Yawo H; Momiyama A
    J Physiol; 1993 Jan; 460():153-72. PubMed ID: 7683716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dihydropyridines, phenylalkylamines and benzothiazepines block N-, P/Q- and R-type calcium currents.
    Diochot S; Richard S; Baldy-Moulinier M; Nargeot J; Valmier J
    Pflugers Arch; 1995 Nov; 431(1):10-9. PubMed ID: 8584405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dihydropyridine block of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive Ca2+ channels in rat pituitary melanotropic cells.
    Mansvelder HD; Stoof JC; Kits KS
    Eur J Pharmacol; 1996 Sep; 311(2-3):293-304. PubMed ID: 8891612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two types of calcium currents of the mouse bipolar cells recorded in the retinal slice preparation.
    de la Villa P; Vaquero CF; Kaneko A
    Eur J Neurosci; 1998 Jan; 10(1):317-23. PubMed ID: 9753140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line.
    Kasai H; Neher E
    J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of N- and L-type Ca2+ channels by the spider venom toxin omega-Aga-IIIA.
    Mintz IM; Venema VJ; Adams ME; Bean BP
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6628-31. PubMed ID: 1713686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity to dihydropyridines, omega-conotoxin and noradrenaline reveals multiple high-voltage-activated Ca2+ channels in rat insulinoma and human pancreatic beta-cells.
    Pollo A; Lovallo M; Biancardi E; Sher E; Socci C; Carbone E
    Pflugers Arch; 1993 Jun; 423(5-6):462-71. PubMed ID: 7688893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.
    Scholz KP; Miller RJ
    J Neurosci; 1995 Jun; 15(6):4612-7. PubMed ID: 7790927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1995 Apr; 73(4):1430-42. PubMed ID: 7643158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons.
    Randall A; Tsien RW
    J Neurosci; 1995 Apr; 15(4):2995-3012. PubMed ID: 7722641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.
    Xu YF; Hewett SJ; Atchison WD
    J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations.
    Albillos A; García AG; Olivera B; Gandía L
    Pflugers Arch; 1996 Oct; 432(6):1030-8. PubMed ID: 8781197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium spikes and calcium currents in neurons from the medial preoptic nucleus of rat.
    Sundgren-Andersson AK; Johansson S
    Brain Res; 1998 Feb; 783(2):194-209. PubMed ID: 9507126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three high threshold calcium channel subtypes in rat corticotropes.
    Kuryshev YA; Childs GV; Ritchie AK
    Endocrinology; 1995 Sep; 136(9):3916-24. PubMed ID: 7649100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of voltage-activated Ca2+ currents in acutely isolated human hippocampal granule cells.
    Beck H; Steffens R; Heinemann U; Elger CE
    J Neurophysiol; 1997 Mar; 77(3):1526-37. PubMed ID: 9084617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
    Zhang HY; Langeslag M; Voncken M; Roubos EW; Scheenen WJ
    J Neuroendocrinol; 2005 Jan; 17(1):1-9. PubMed ID: 15720469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium channels in the GABAergic presynaptic nerve terminals projecting to meynert neurons of the rat.
    Rhee JS; Ishibashi H; Akaike N
    J Neurochem; 1999 Feb; 72(2):800-7. PubMed ID: 9930756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.