BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 8657148)

  • 1. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction.
    Wymann MP; Bulgarelli-Leva G; Zvelebil MJ; Pirola L; Vanhaesebroeck B; Waterfield MD; Panayotou G
    Mol Cell Biol; 1996 Apr; 16(4):1722-33. PubMed ID: 8657148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of active site residues in mevalonate diphosphate decarboxylase: implications for a family of phosphotransferases.
    Krepkiy D; Miziorko HM
    Protein Sci; 2004 Jul; 13(7):1875-81. PubMed ID: 15169949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase.
    Morgan HP; Walsh MJ; Blackburn EA; Wear MA; Boxer MB; Shen M; Veith H; McNae IW; Nowicki MW; Michels PA; Auld DS; Fothergill-Gilmore LA; Walkinshaw MD
    Biochem J; 2012 Nov; 448(1):67-72. PubMed ID: 22906073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting isoform selectivity of PI3K inhibitors: the role of non-conserved residues in the catalytic pocket.
    Frazzetto M; Suphioglu C; Zhu J; Schmidt-Kittler O; Jennings IG; Cranmer SL; Jackson SP; Kinzler KW; Vogelstein B; Thompson PE
    Biochem J; 2008 Sep; 414(3):383-90. PubMed ID: 18489260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleoside triphosphate mimicry: a sugar triazolyl nucleoside as an ATP-competitive inhibitor of B. anthracis pantothenate kinase.
    Rowan AS; Nicely NI; Cochrane N; Wlassoff WA; Claiborne A; Hamilton CJ
    Org Biomol Chem; 2009 Oct; 7(19):4029-36. PubMed ID: 19763307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Reversible Covalent Modification of a Noncatalytic Lysine of the Krev Interaction Trapped 1 Protein Enables Site-Directed Screening for Protein-Protein Interaction Inhibitors.
    Francisco KR; Bruystens J; Varricchio C; McCurdy S; Wu J; Lopez-Ramirez MA; Ginsberg M; Caffrey CR; Brancale A; Gingras AR; Hixon MS; Ballatore C
    ACS Pharmacol Transl Sci; 2023 Nov; 6(11):1651-1658. PubMed ID: 37974623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes.
    Blommaart EF; Krause U; Schellens JP; Vreeling-Sindelárová H; Meijer AJ
    Eur J Biochem; 1997 Jan; 243(1-2):240-6. PubMed ID: 9030745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of wortmannin on phosphatidylinositol 3-kinase-mediated cellular events.
    Hazeki O; Hazeki K; Katada T; Ui M
    J Lipid Mediat Cell Signal; 1996 Sep; 14(1-3):259-61. PubMed ID: 8906571
    [No Abstract]   [Full Text] [Related]  

  • 9. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages.
    Araki N; Johnson MT; Swanson JA
    J Cell Biol; 1996 Dec; 135(5):1249-60. PubMed ID: 8947549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, enhances LPS-induced NO production from murine peritoneal macrophages.
    Park YC; Lee CH; Kang HS; Chung HT; Kim HD
    Biochem Biophys Res Commun; 1997 Nov; 240(3):692-6. PubMed ID: 9398628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase gamma: structure-activity analysis and interactions with wortmannin.
    Stoyanova S; Bulgarelli-Leva G; Kirsch C; Hanck T; Klinger R; Wetzker R; Wymann MP
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):489-95. PubMed ID: 9182708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of phosphatidylinositol 3-kinase inhibition by wortmannin and related analogs.
    Norman BH; Shih C; Toth JE; Ray JE; Dodge JA; Johnson DW; Rutherford PG; Schultz RM; Worzalla JF; Vlahos CJ
    J Med Chem; 1996 Mar; 39(5):1106-11. PubMed ID: 8676346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids.
    Bracken AK; Gekko CE; Suss NO; Lueders EE; Cui Q; Fu Q; Lui ACW; Anderson ET; Zhang S; Abbasov ME
    J Am Chem Soc; 2024 Jan; 146(4):2524-2548. PubMed ID: 38230968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy gene-dependent intracellular immunity triggered by interferon-γ.
    McAllaster MR; Bhushan J; Balce DR; Orvedahl A; Park A; Hwang S; Sullender ME; Sibley LD; Virgin HW
    mBio; 2023 Oct; 14(6):e0233223. PubMed ID: 37905813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Covalently Binding Warhead Compounds in the Validation of the Cytomegalovirus Nuclear Egress Complex as an Antiviral Target.
    Tillmanns J; Häge S; Borst EM; Wardin J; Eickhoff J; Klebl B; Wagner S; Wangen C; Hahn F; Socher E; Marschall M
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging.
    Wahl-Schott C; Freichel M; Hennis K; Philippaert K; Ottenheijm R; Tsvilovskyy V; Varbanov H
    Handb Exp Pharmacol; 2023; 278():277-304. PubMed ID: 36894791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arf5-mediated regulation of mTORC1 at the plasma membrane.
    Makhoul C; Houghton FJ; Hinde E; Gleeson PA
    Mol Biol Cell; 2023 Apr; 34(4):ar23. PubMed ID: 36735494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis.
    Yan H; Zhuang M; Xu X; Li S; Yang M; Li N; Du X; Hu K; Peng X; Huang W; Wu H; Tse YC; Zhao L; Wang H
    Autophagy; 2023 Mar; 19(3):768-783. PubMed ID: 35786359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy.
    Vasan N; Cantley LC
    Nat Rev Clin Oncol; 2022 Jul; 19(7):471-485. PubMed ID: 35484287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukemia inhibitory factor drives glucose metabolic reprogramming to promote breast tumorigenesis.
    Yue X; Wang J; Chang CY; Liu J; Yang X; Zhou F; Qiu X; Bhatt V; Guo JY; Su X; Zhang L; Feng Z; Hu W
    Cell Death Dis; 2022 Apr; 13(4):370. PubMed ID: 35440095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.