BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 8659858)

  • 1. Action potential duration modulates calcium influx, Na(+)-Ca2+ exchange, and intracellular calcium release in rat ventricular myocytes.
    Clark RB; Bouchard RA; Giles WR
    Ann N Y Acad Sci; 1996 Apr; 779():417-29. PubMed ID: 8659858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Sep; 469():583-99. PubMed ID: 8271217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of sarcolemmal sodium-calcium exchange and intracellular calcium release to force development in isolated canine ventricular muscle.
    Bouchard RA; Bose D
    J Gen Physiol; 1992 Jun; 99(6):931-60. PubMed ID: 1640221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
    Weisser-Thomas J; Piacentino V; Gaughan JP; Margulies K; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):974-85. PubMed ID: 12650875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that reverse Na-Ca exchange can trigger SR calcium release.
    Litwin S; Kohmoto O; Levi AJ; Spitzer KW; Bridge JH
    Ann N Y Acad Sci; 1996 Apr; 779():451-63. PubMed ID: 8659861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements.
    Bouchard RA; Clark RB; Giles WR
    Circ Res; 1995 May; 76(5):790-801. PubMed ID: 7728996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of reverse-mode Na(+)-Ca2+ exchange in excitation-contraction coupling in the heart.
    Levesque PC; Leblanc N; Hume JR
    Ann N Y Acad Sci; 1991; 639():386-97. PubMed ID: 1785865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Na(+)-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling.
    Litwin SE; Bridge JH
    Circ Res; 1997 Dec; 81(6):1083-93. PubMed ID: 9400390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of internal sodium and caesium on phasic contraction of patch-clamped rabbit ventricular myocytes.
    Levi AJ; Mitcheson JS; Hancox JC
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):1-19. PubMed ID: 8730578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocytes.
    Evans AM; Cannell MB
    Cardiovasc Res; 1997 Aug; 35(2):294-302. PubMed ID: 9349392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes.
    Levi AJ; Spitzer KW; Kohmoto O; Bridge JH
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1422-33. PubMed ID: 8184920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low efficiency of Ca2+ entry through the Na(+)-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)-Ca2+ exchange.
    Sipido KR; Maes M; Van de Werf F
    Circ Res; 1997 Dec; 81(6):1034-44. PubMed ID: 9400385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling.
    Bers DM; Lederer WJ; Berlin JR
    Am J Physiol; 1990 May; 258(5 Pt 1):C944-54. PubMed ID: 2333986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of sodium-calcium exchange in activation of contraction in rat ventricle.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Dec; 472():391-413. PubMed ID: 8145151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes.
    Yao A; Su Z; Nonaka A; Zubair I; Lu L; Philipson KD; Bridge JH; Barry WH
    Circ Res; 1998 Apr; 82(6):657-65. PubMed ID: 9546374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
    Han C; Tavi P; Weckström M
    Biophys J; 2002 Mar; 82(3):1483-96. PubMed ID: 11867463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium-induced creep currents associated with tonic contractions in cardiac myocytes isolated from guinea-pigs.
    Niggli E
    J Physiol; 1989 Jul; 414():549-68. PubMed ID: 2607441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation.
    Janczewski AM; Spurgeon HA; Lakatta EG
    J Mol Cell Cardiol; 2002 Jun; 34(6):641-8. PubMed ID: 12054851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes.
    Sipido KR; Carmeliet E; Pappano A
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):1-17. PubMed ID: 8583394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.