BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8659859)

  • 1. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle.
    Bers DM; Bassani JW; Bassani RA
    Ann N Y Acad Sci; 1996 Apr; 779():430-42. PubMed ID: 8659859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes.
    Bers DM; Bassani JW; Bassani RA
    Cardiovasc Res; 1993 Oct; 27(10):1772-7. PubMed ID: 8275522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase.
    Bassani RA; Bassani JW; Bers DM
    Pflugers Arch; 1995 Aug; 430(4):573-8. PubMed ID: 7491284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes.
    McCall E; Ginsburg KS; Bassani RA; Shannon TR; Qi M; Samarel AM; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1348-60. PubMed ID: 9575940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects.
    Li L; Chu G; Kranias EG; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1335-47. PubMed ID: 9575939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species differences and the role of sodium-calcium exchange in cardiac muscle relaxation.
    Bers DM
    Ann N Y Acad Sci; 1991; 639():375-85. PubMed ID: 1785864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1992; 453():591-608. PubMed ID: 1464847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of calcium transport in heart using modern approaches.
    Bers DM
    New Horiz; 1996 Feb; 4(1):36-44. PubMed ID: 8689274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase.
    Mackiewicz U; Lewartowski B
    J Physiol Pharmacol; 2006 Mar; 57(1):3-15. PubMed ID: 16601311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SR Ca loading in cardiac muscle preparations based on rapid-cooling contractures.
    Bers DM
    Am J Physiol; 1989 Jan; 256(1 Pt 1):C109-20. PubMed ID: 2536224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes.
    Balaguru D; Haddock PS; Puglisi JL; Bers DM; Coetzee WA; Artman M
    J Mol Cell Cardiol; 1997 Oct; 29(10):2747-57. PubMed ID: 9344769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes.
    Negretti N; O'Neill SC; Eisner DA
    Cardiovasc Res; 1993 Oct; 27(10):1826-30. PubMed ID: 8275530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential duration modulates calcium influx, Na(+)-Ca2+ exchange, and intracellular calcium release in rat ventricular myocytes.
    Clark RB; Bouchard RA; Giles WR
    Ann N Y Acad Sci; 1996 Apr; 779():417-29. PubMed ID: 8659858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+-Ca2+ exchanger.
    Terracciano CM; Souza AI; Philipson KD; MacLeod KT
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):651-67. PubMed ID: 9769411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells.
    Bassani JW; Qi M; Samarel AM; Bers DM
    Circ Res; 1994 May; 74(5):991-7. PubMed ID: 8156646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Sep; 469():583-99. PubMed ID: 8271217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of sarcoplasmic reticulum and Na-Ca exchange in the Ca2+ extrusion from the resting myocytes of guinea-pig heart: comparison with rat.
    Wolska BM; Lewartowski B
    J Mol Cell Cardiol; 1993 Jan; 25(1):75-91. PubMed ID: 8441183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclopiazonic acid, an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, on the frequency-dependence of the contraction-relaxation cycle of the guinea-pig isolated atrium.
    Yard NJ; Chiesi M; Ball HA
    Br J Pharmacol; 1994 Nov; 113(3):1001-7. PubMed ID: 7858841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.