BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 8660434)

  • 21. Intronic alternative splicing regulators identified by comparative genomics in nematodes.
    Kabat JL; Barberan-Soler S; McKenna P; Clawson H; Farrer T; Zahler AM
    PLoS Comput Biol; 2006 Jul; 2(7):e86. PubMed ID: 16839192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of a globin gene in Caenorhabditis elegans.
    Mansell JB; Timms K; Tate WP; Moens L; Trotman CN
    Biochem Mol Biol Int; 1993 Jul; 30(4):643-7. PubMed ID: 8401321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments.
    Chu X; Thompson D; Yee LJ; Sung LA
    Gene; 2000 Oct; 256(1-2):271-81. PubMed ID: 11054557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional genomics in Caenorhabditis elegans: An approach involving comparisons of sequences from related nematodes.
    Thacker C; Marra MA; Jones A; Baillie DL; Rose AM
    Genome Res; 1999 Apr; 9(4):348-59. PubMed ID: 10207157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of sperm morphology, cytology and activation in Caenorhabditis elegans, Caenorhabditis remanei and Caenorhabditis briggsae.
    Geldziler B; Chatterjee I; Kadandale P; Putiri E; Patel R; Singson A
    Dev Genes Evol; 2006 Apr; 216(4):198-208. PubMed ID: 16389557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A phylogeny of caenorhabditis reveals frequent loss of introns during nematode evolution.
    Cho S; Jin SW; Cohen A; Ellis RE
    Genome Res; 2004 Jul; 14(7):1207-20. PubMed ID: 15231741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conservation of position and sequence of a novel, widely expressed gene containing the major human alpha-globin regulatory element.
    Vyas P; Vickers MA; Picketts DJ; Higgs DR
    Genomics; 1995 Oct; 29(3):679-89. PubMed ID: 8575760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment.
    Kent WJ; Zahler AM
    Genome Res; 2000 Aug; 10(8):1115-25. PubMed ID: 10958630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis.
    Hare EE; Loer CM
    BMC Evol Biol; 2004 Aug; 4():24. PubMed ID: 15287963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NemaFootPrinter: a web based software for the identification of conserved non-coding genome sequence regions between C. elegans and C. briggsae.
    Rambaldi D; Guffanti A; Morandi P; Cassata G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S22. PubMed ID: 16351749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tandemly duplicated alpha globin genes of gibbon.
    Bailey AD; Stanhope M; Slightom JL; Goodman M; Shen CC; Shen CK
    J Biol Chem; 1992 Sep; 267(26):18398-406. PubMed ID: 1526980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.
    Amon S; Gupta BP
    Dev Biol; 2017 Apr; 424(1):90-103. PubMed ID: 28215941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of introns by 'intronization' of exonic sequences.
    Irimia M; Rukov JL; Penny D; Vinther J; Garcia-Fernandez J; Roy SW
    Trends Genet; 2008 Aug; 24(8):378-81. PubMed ID: 18597887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservation of the Caenorhabditis elegans cuticle collagen gene col-12 in Caenorhabditis briggsae.
    Gilleard JS; Henderson DK; Ulla N
    Gene; 1997 Jul; 193(2):181-6. PubMed ID: 9256075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning by synteny: identifying C. briggsae homologues of C. elegans genes.
    Kuwabara PE; Shah S
    Nucleic Acids Res; 1994 Oct; 22(21):4414-8. PubMed ID: 7971272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes.
    Gotoh O
    Mol Biol Evol; 1998 Nov; 15(11):1447-59. PubMed ID: 12572608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence, organization, and expression of the human FEM1B gene.
    Ventura-Holman T; Maher JF
    Biochem Biophys Res Commun; 2000 Jan; 267(1):317-20. PubMed ID: 10623617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses.
    Roy SW; Penny D
    Mol Biol Evol; 2006 Dec; 23(12):2259-62. PubMed ID: 16943250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of two Caenorhabditis genes encoding FMRFamide(Phe-Met-Arg-Phe-NH2)-like peptides.
    Schinkmann K; Li C
    Brain Res Mol Brain Res; 1994 Jul; 24(1-4):238-46. PubMed ID: 7968363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Globins in Caenorhabditis elegans.
    Tilleman L; Germani F; De Henau S; Geuens E; Hoogewijs D; Braeckman BP; Vanfleteren JR; Moens L; Dewilde S
    IUBMB Life; 2011 Mar; 63(3):166-74. PubMed ID: 21445847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.