BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8660676)

  • 1. Purification and characterization of protein phosphatase 2C in rat parotid acinar cells: two forms of Mg(2+)-activated histone phosphatase and phosphorylation by cAMP-dependent protein kinase.
    Yokoyama N; Kobayashi T; Tamura S; Sugiya H
    Arch Biochem Biophys; 1996 Jul; 331(1):1-8. PubMed ID: 8660676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of multiple S6 phosphatases from the rat parotid gland.
    Yokoyama N
    Mol Cell Biochem; 1995 Jul; 148(2):123-32. PubMed ID: 8594416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PP2C phosphatase activity is coupled to cAMP-mediated pathway in rat parotid acinar cells.
    Yokoyama N; Kobayashi T; Tamura S; Sugiya H
    Biochem Mol Biol Int; 1995 Jul; 36(4):845-53. PubMed ID: 8528147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and partial characterization of protein phosphatases from rat thymus.
    Bakó E; Dombrádi V; Erdödi F; Zumo L; Kertai P; Gergely P
    Biochim Biophys Acta; 1989 Oct; 1013(3):300-5. PubMed ID: 2553107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of Mg2+-dependent phosphotyrosyl protein phosphatase from rat liver cytosol.
    Tamura S; Suzuki Y; Kikuchi K; Tsuiki S
    Biochem Biophys Res Commun; 1986 Oct; 140(1):212-8. PubMed ID: 3022716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dephosphorylation of ribosomal protein S6 phosphorylated via the cAMP-mediated signaling pathway in rat parotid gland: effect of okadaic acid and Zn2+.
    Hara-Yokoyama M; Sugiya H; Furuyama S; Wang JH; Yokoyama N
    Biochem Mol Biol Int; 1994 Dec; 34(6):1177-87. PubMed ID: 7696990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephosphorylation of tau factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by aluminum.
    Yamamoto H; Saitoh Y; Yasugawa S; Miyamoto E
    J Neurochem; 1990 Aug; 55(2):683-90. PubMed ID: 2164575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of soluble protein phosphatases that dephosphorylate voltage-sensitive sodium channels in rat brain.
    Chen TC; Law B; Kondratyuk T; Rossie S
    J Biol Chem; 1995 Mar; 270(13):7750-6. PubMed ID: 7706324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dephosphorylation of 22-kDa phosphoprotein by type 2B protein phosphatase in rat parotid acinar cells.
    Sugiya H; Furuyama S; Yokoyama N
    Arch Oral Biol; 1995 Aug; 40(8):713-6. PubMed ID: 7487571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of Mg2+-dependent glycogen synthase phosphatase (phosphoprotein phosphatase IA) from rat liver.
    Hiraga A; Kikuchi K; Tamura S; Tsuiki S
    Eur J Biochem; 1981 Oct; 119(3):503-10. PubMed ID: 6273162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of multiple forms of phosphoprotein phosphatase in bovine thyroid.
    Kasai K; Field JB
    Metabolism; 1983 Mar; 32(3):296-307. PubMed ID: 6298568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A specific phosphoprotein phosphatase acts on histone H1 phosphorylated by protein kinase C.
    Sahyoun N; LeVine H; McConnell R; Bronson D; Cuatrecasas P
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6760-4. PubMed ID: 6316323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification, subunit composition and regulatory properties of the ATP X Mg2+-dependent form of type I phosphoprotein phosphatase from bovine heart.
    Price DJ; Tabarini D; Li HC
    Eur J Biochem; 1986 Aug; 158(3):635-45. PubMed ID: 3015619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue and subcellular distributions, and characterization of rat brain protein phosphatase 2A containing a 72-kDa delta/B" subunit.
    Nagase T; Murakami T; Nozaki H; Inoue R; Nishito Y; Tanabe O; Usui H; Takeda M
    J Biochem; 1997 Jul; 122(1):178-87. PubMed ID: 9276686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of multiple molecular forms of Mg(2+)-dependent protein phosphatase from Saccharomyces cerevisiae.
    Murakami T; Kobayashi T; Terasawa T; Ohnishi M; Kato S; Sasahara Y; Itoh M; Nakano T; Tamura S
    J Biochem; 1994 Apr; 115(4):762-6. PubMed ID: 8089094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein phosphatase type-2C isozymes present in vertebrate retinae: purification, characterization, and localization in photoreceptors.
    Klumpp S; Selke D; Fischer D; Baumann A; Müller F; Thanos S
    J Neurosci Res; 1998 Feb; 51(3):328-38. PubMed ID: 9486768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways.
    Takekawa M; Maeda T; Saito H
    EMBO J; 1998 Aug; 17(16):4744-52. PubMed ID: 9707433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of an Mg2+-dependent protein phosphatase.
    Tsuiki S; Hiraga A; Kikuchi K; Tamura S
    Methods Enzymol; 1988; 159():437-46. PubMed ID: 2842608
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphorylation and dephosphorylation of human platelet surface proteins by an ecto-protein kinase/phosphatase system.
    Naik UP; Kornecki E; Ehrlich YH
    Biochim Biophys Acta; 1991 Apr; 1092(2):256-64. PubMed ID: 1850305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of a protein phosphatase from rat liver acting on key enzymes of glucose metabolism.
    Mieskes G; Brand IA; Söling HD
    Eur J Biochem; 1984 Apr; 140(2):375-83. PubMed ID: 6325187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.