These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8660706)

  • 1. The effect of the exogenous NADH dehydrogenase of heart mitochondria on the transmembranous proton movement.
    Nohl H; Schönheit K
    Arch Biochem Biophys; 1996 Jul; 331(2):259-64. PubMed ID: 8660706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria.
    Oliveira PJ; Santos DJ; Moreno AJ
    Arch Biochem Biophys; 2000 Feb; 374(2):279-85. PubMed ID: 10666308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.
    Cherednichenko G; Zima AV; Feng W; Schaefer S; Blatter LA; Pessah IN
    Circ Res; 2004 Mar; 94(4):478-86. PubMed ID: 14699012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted redox oscillation in oxidative phosphorylation in jaundiced rat liver mitochondria and its relation to calcium ion.
    Chang YJ; Iwata S; Terada Y; Ozawa K
    J Surg Res; 1996 Dec; 66(2):91-9. PubMed ID: 9024818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of the existence of an organo-specific NADH dehydrogenase in heart mitochondria.
    Nohl H
    Eur J Biochem; 1987 Dec; 169(3):585-91. PubMed ID: 3691507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of ionol-type antioxidants on the energetics of liver mitochondria].
    Drobinskaia IE; Zhigacheva IV; Kaplan EIa
    Biokhimiia; 1982 Jan; 47(1):81-5. PubMed ID: 7066421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity.
    Gille L; Nohl H
    Free Radic Biol Med; 1997; 23(5):775-82. PubMed ID: 9296455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of cytochrome c-mediated extramitochondrial NADH oxidation by contact site density.
    Marzulli D; La Piana G; Fransvea E; Lofrumento NE
    Biochem Biophys Res Commun; 1999 Jun; 259(2):325-30. PubMed ID: 10362507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Induction of hydrogen ion transport in mitochondrial membranes].
    Sharyshev AA; Novogorodov SA; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(1):52-7. PubMed ID: 7066402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments].
    Sharova IV; Vekshin NL
    Biofizika; 2004; 49(5):814-21. PubMed ID: 15526465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
    Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.