BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8660953)

  • 21. Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog.
    Fraidenraich D; Iwahori A; Rudnicki M; Basilico C
    Dev Biol; 2000 Sep; 225(2):392-406. PubMed ID: 10985858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation.
    Sun L; Liu L; Yang XJ; Wu Z
    J Cell Sci; 2004 Jun; 117(Pt 14):3021-9. PubMed ID: 15173318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MyoD activity upregulates E2F1 and enhances transcription from the cyclin E promoter in differentiating myoblasts lacking a functional retinoblastoma protein.
    Tedesco D; Vesco C
    Exp Cell Res; 2001 Oct; 269(2):301-11. PubMed ID: 11570822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. c-Myb inhibits myogenic differentiation through repression of MyoD.
    Kaspar P; Pajer P; Sedlak D; Tamaoki T; Dvorak M
    Exp Cell Res; 2005 Oct; 309(2):419-28. PubMed ID: 16055116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD.
    Bailey P; Downes M; Lau P; Harris J; Chen SL; Hamamori Y; Sartorelli V; Muscat GE
    Mol Endocrinol; 1999 Jul; 13(7):1155-68. PubMed ID: 10406466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD.
    Lemercier C; To RQ; Carrasco RA; Konieczny SF
    EMBO J; 1998 Mar; 17(5):1412-22. PubMed ID: 9482738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of vertebrate muscle differentiation by thyroid hormone: the role of the myoD gene family.
    Muscat GE; Downes M; Dowhan DH
    Bioessays; 1995 Mar; 17(3):211-8. PubMed ID: 7748175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MyoD transactivates angiotensinogen promoter in fibroblast C3H10T1/2 cells.
    Goswami SK; Zhao YY; Siddiqui MA; Kumar A
    Cell Mol Biol Res; 1993; 39(2):125-30. PubMed ID: 8220582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle differentiation: insulin-like growth factors as positive modulators of myogenic regulatory genes?
    Montarras D; Pinset C; Pérez MC; Ilan J; Gros F
    C R Acad Sci III; 1993 Sep; 316(9):1025-31. PubMed ID: 8076203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smad7 promotes and enhances skeletal muscle differentiation.
    Kollias HD; Perry RL; Miyake T; Aziz A; McDermott JC
    Mol Cell Biol; 2006 Aug; 26(16):6248-60. PubMed ID: 16880533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD.
    Kong Y; Flick MJ; Kudla AJ; Konieczny SF
    Mol Cell Biol; 1997 Aug; 17(8):4750-60. PubMed ID: 9234731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preferential MyoD homodimer formation demonstrated by a general method of dominant negative mutation employing fusion with a lysosomal protease.
    Li FQ; Coonrod A; Horwitz M
    J Cell Biol; 1996 Nov; 135(4):1043-57. PubMed ID: 8922385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis.
    Mueller AC; Cichewicz MA; Dey BK; Layer R; Reon BJ; Gagan JR; Dutta A
    Mol Cell Biol; 2015 Feb; 35(3):498-513. PubMed ID: 25403490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo.
    Qin RF; Mao TQ; Gu XM; Hu KJ; Liu YP; Chen JW; Nie X
    Mol Cell Biochem; 2007 Aug; 302(1-2):233-9. PubMed ID: 17415623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of cell history on response to helix-loop-helix family of myogenic regulators.
    Schäfer BW; Blakely BT; Darlington GJ; Blau HM
    Nature; 1990 Mar; 344(6265):454-8. PubMed ID: 2157160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The core binding factor CBF negatively regulates skeletal muscle terminal differentiation.
    Philipot O; Joliot V; Ait-Mohamed O; Pellentz C; Robin P; Fritsch L; Ait-Si-Ali S
    PLoS One; 2010 Feb; 5(2):e9425. PubMed ID: 20195544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.
    Kokabu S; Nakatomi C; Matsubara T; Ono Y; Addison WN; Lowery JW; Urata M; Hudnall AM; Hitomi S; Nakatomi M; Sato T; Osawa K; Yoda T; Rosen V; Jimi E
    J Biol Chem; 2017 Aug; 292(31):12885-12894. PubMed ID: 28607151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein.
    Sung MS; Mun JY; Kwon O; Kwon KS; Oh DB
    Biochem Biophys Res Commun; 2013 Jul; 437(1):156-61. PubMed ID: 23810391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lack of myostatin reduces MyoD induced myogenic potential of primary muscle fibroblasts.
    Shenoy P S; Bose B; Sharma M; McFarlane C; Kambadur R
    J Cell Biochem; 2014 Nov; 115(11):1908-17. PubMed ID: 24909401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyethylene glycol-based protein nanocapsules for functional delivery of a differentiation transcription factor.
    Biswas A; Liu Y; Liu T; Fan G; Tang Y
    Biomaterials; 2012 Jul; 33(21):5459-67. PubMed ID: 22521490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.