These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8661254)
1. Reversible changes in hippocampal 3H-AMPA binding following inhibitory avoidance training in the rat. Cammarota M; Bernabeu R; Izquierdo I; Medina JH Neurobiol Learn Mem; 1996 Jul; 66(1):85-8. PubMed ID: 8661254 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory avoidance training induces rapid and selective changes in 3[H]AMPA receptor binding in the rat hippocampal formation. Cammarota M; Izquierdo I; Wolfman C; Levi de Stein M; Bernabeu R; Jerusalinsky D; Medina JH Neurobiol Learn Mem; 1995 Nov; 64(3):257-64. PubMed ID: 8564379 [TBL] [Abstract][Full Text] [Related]
3. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396 [TBL] [Abstract][Full Text] [Related]
4. Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus. Tocco G; Annala AJ; Baudry M; Thompson RF Behav Neural Biol; 1992 Nov; 58(3):222-31. PubMed ID: 1280948 [TBL] [Abstract][Full Text] [Related]
5. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Izquierdo I; Medina JH Neurobiol Learn Mem; 1997 Nov; 68(3):285-316. PubMed ID: 9398590 [TBL] [Abstract][Full Text] [Related]
7. Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Cammarota M; de Stein ML; Paratcha G; Bevilaqua LR; Izquierdo I; Medina JH Neurochem Res; 2000 May; 25(5):567-72. PubMed ID: 10905617 [TBL] [Abstract][Full Text] [Related]
8. Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response. Hauge SA; Tracy JA; Baudry M; Thompson RF Brain Res; 1998 Aug; 803(1-2):9-18. PubMed ID: 9729243 [TBL] [Abstract][Full Text] [Related]
9. Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain. Cyr M; Ghribi O; Di Paolo T J Neuroendocrinol; 2000 May; 12(5):445-52. PubMed ID: 10792584 [TBL] [Abstract][Full Text] [Related]
10. [3H]muscimol binding to gamma-aminobutyric acid(A) receptors is upregulated in CA1 neurons of the gerbil hippocampus in the ischemia-tolerant state. Sommer C; Fahrner A; Kiessling M Stroke; 2002 Jun; 33(6):1698-705. PubMed ID: 12053014 [TBL] [Abstract][Full Text] [Related]
11. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
12. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning. Nicolle MM; Bizon JL; Gallagher M Neuroscience; 1996 Oct; 74(3):741-56. PubMed ID: 8884770 [TBL] [Abstract][Full Text] [Related]
13. Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo. Maren S; Tocco G; Standley S; Baudry M; Thompson RF Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9654-8. PubMed ID: 8415757 [TBL] [Abstract][Full Text] [Related]
14. Involvement of AMPA receptors in maintenance of memory for a passive avoidance task in day-old domestic chicks (Gallus domesticus). Steele RJ; Stewart MG Eur J Neurosci; 1995 Jun; 7(6):1297-304. PubMed ID: 7582103 [TBL] [Abstract][Full Text] [Related]
15. Different hippocampal molecular requirements for short- and long-term retrieval of one-trial avoidance learning. Izquierdo LA; Barros DM; Ardenghi PG; Pereira P; Rodrigues C; Choi H; Medina JH; Izquierdo I Behav Brain Res; 2000 Jun; 111(1-2):93-8. PubMed ID: 10840135 [TBL] [Abstract][Full Text] [Related]
16. Septotemporal distribution of [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites in the rat hippocampus. Martens U; Capito B; Wree A Anat Embryol (Berl); 1998 Sep; 198(3):195-204. PubMed ID: 9764974 [TBL] [Abstract][Full Text] [Related]
17. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Mitsushima D; Ishihara K; Sano A; Kessels HW; Takahashi T Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12503-8. PubMed ID: 21746893 [TBL] [Abstract][Full Text] [Related]
18. Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Bernabeu R; Izquierdo I; Cammarota M; Jerusalinsky D; Medina JH Brain Res; 1995 Jul; 685(1-2):163-8. PubMed ID: 7583242 [TBL] [Abstract][Full Text] [Related]
19. Ionotropic glutamate receptor subtypes in the aged memory-impaired and unimpaired Long-Evans rat. Le Jeune H; Cécyre D; Rowe W; Meaney MJ; Quirion R Neuroscience; 1996 Sep; 74(2):349-63. PubMed ID: 8865188 [TBL] [Abstract][Full Text] [Related]
20. Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Chabot C; Gagné J; Giguère C; Bernard J; Baudry M; Massicotte G Hippocampus; 1998; 8(3):299-309. PubMed ID: 9662143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]