These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8661279)

  • 1. Excitation of Arbitrary Shapes in Nuclear Magnetic Resonance by a Random Walk in Discrete k Space.
    Sersa I; Macura S
    J Magn Reson B; 1996 May; 111(2):186-8. PubMed ID: 8661279
    [No Abstract]   [Full Text] [Related]  

  • 2. Excitation of arbitrary shapes by gradient optimized random walk in discrete k-space.
    Sersa I; Macura S
    Magn Reson Med; 1997 Jun; 37(6):920-31. PubMed ID: 9178245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In the eye of the beholder: Inhomogeneous distribution of high-resolution shapes within the random-walk ensemble.
    Müller CL; Sbalzarini IF; van Gunsteren WF; Zagrović B; Hünenberger PH
    J Chem Phys; 2009 Jun; 130(21):214904. PubMed ID: 19508095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective excitation of two-dimensional arbitrarily shaped voxels with parallel excitation in spectroscopy.
    Snyder J; Haas M; Hennig J; Zaitsev M
    Magn Reson Med; 2012 Feb; 67(2):300-9. PubMed ID: 21721040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries.
    Toumelin E; Torres-Verdín C; Sun B; Dunn KJ
    J Magn Reson; 2007 Sep; 188(1):83-96. PubMed ID: 17632022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining random walk and regression models to understand solvation in multi-component solvent systems.
    Gale EM; Johns MA; Wirawan RH; Scott JL
    Phys Chem Chem Phys; 2017 Jul; 19(27):17805-17815. PubMed ID: 28657079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission.
    Waxmann P; Mekle R; Schubert F; Brühl R; Kuehne A; Lindel TD; Seifert F; Speck O; Ittermann B
    NMR Biomed; 2016 Aug; 29(8):1028-37. PubMed ID: 27254102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to measure arbitrary k-space trajectories for rapid MR imaging.
    Mason GF; Harshbarger T; Hetherington HP; Zhang Y; Pohost GM; Twieg DB
    Magn Reson Med; 1997 Sep; 38(3):492-6. PubMed ID: 9339451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation of complicated shapes in three dimensions.
    Sersa I; Macura S
    J Magn Reson; 1998 Dec; 135(2):466-77. PubMed ID: 9878474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional RF pulses: a new approach to selectively exciting J-coupled spins in nuclear magnetic resonance.
    Lupulescu A; Aharon H; Frydman L
    J Chem Phys; 2013 Oct; 139(14):144204. PubMed ID: 24116611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes.
    Ellery AJ; Baker RE; Simpson MJ
    Phys Biol; 2015 Nov; 12(6):066010. PubMed ID: 26599468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sculpting 3D spatial selectivity with pairs of 2D pulses: A comparison of methods.
    Farkash G; Dumez JN; Frydman L
    J Magn Reson; 2016 Dec; 273():9-18. PubMed ID: 27718460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times.
    Vold RL; Hoatson GL
    J Magn Reson; 2009 May; 198(1):57-72. PubMed ID: 19201232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks.
    Giordani T; Polino E; Emiliani S; Suprano A; Innocenti L; Majury H; Marrucci L; Paternostro M; Ferraro A; Spagnolo N; Sciarrino F
    Phys Rev Lett; 2019 Jan; 122(2):020503. PubMed ID: 30720314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical resolution and noise characteristics of linearly reconstructed magnetic resonance data with arbitrary k-space sampling.
    Pipe JG; Duerk JL
    Magn Reson Med; 1995 Aug; 34(2):170-8. PubMed ID: 7476075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. k-space inherited parallel acquisition (KIPA): application on dynamic magnetic resonance imaging thermometry.
    Guo JY; Kholmovski EG; Zhang L; Jeong EK; Parker DL
    Magn Reson Imaging; 2006 Sep; 24(7):903-15. PubMed ID: 16916708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): constrained image reconstruction using k-space locality in radiofrequency coil encoded data.
    Yeh EN; McKenzie CA; Ohliger MA; Sodickson DK
    Magn Reson Med; 2005 Jun; 53(6):1383-92. PubMed ID: 15906283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in sensitivity encoding with arbitrary k-space trajectories.
    Pruessmann KP; Weiger M; Börnert P; Boesiger P
    Magn Reson Med; 2001 Oct; 46(4):638-51. PubMed ID: 11590639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cover time for random walks on arbitrary complex networks.
    Maier BF; Brockmann D
    Phys Rev E; 2017 Oct; 96(4-1):042307. PubMed ID: 29347543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR gradient response modeling to ensure excitation coherence.
    Reese TG; Pearlman JD
    J Magn Reson Imaging; 1994; 4(4):569-76. PubMed ID: 7949683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.