These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8661492)

  • 1. Diffusion through narrow pores: movement of ions, water and nonelectrolytes through track-etched PETP membranes.
    Rostovtseva TK; Bashford CL; Alder GM; Hill GN; McGiffert C; Apel PY; Lowe G; Pasternak CA
    J Membr Biol; 1996 May; 151(1):29-43. PubMed ID: 8661492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane pores--from biology to track-etched membranes.
    Bashford CL
    Biosci Rep; 1995 Dec; 15(6):553-65. PubMed ID: 9156584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuation of surface charge in membrane pores.
    Bashford CL; Alder GM; Pasternak CA
    Biophys J; 2002 Apr; 82(4):2032-40. PubMed ID: 11916860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of ions across peritoneal membrane.
    Islam N; Bulla NA; Islam S
    Biochim Biophys Acta; 2004 Dec; 1667(2):174-81. PubMed ID: 15581853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent surface electrostatic effects in retention on immobilized artificial membrane chromatography: Determination of the intrinsic phospholipid-water sorption coefficients of diverse analytes.
    Yang YX; Zhang Q; Li QQ; Xia ZN; Chen H; Zhou K; Yang FQ
    J Chromatogr A; 2018 Oct; 1570():172-182. PubMed ID: 30086834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions.
    Ramos H; Valdivieso E; Gamargo M; Dagger F; Cohen BE
    J Membr Biol; 1996 Jul; 152(1):65-75. PubMed ID: 8660406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Modeling of discrete currents of single ion channels of cell membranes using synthetic nanometer pores in polyethylene terephthalate films].
    Lev AA; Gotlib VA; Lebedeva NE
    Tsitologiia; 2008; 50(4):323-8. PubMed ID: 18664115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid switching of ion current in narrow pores: implications for biological ion channels.
    Lev AA; Korchev YE; Rostovtseva TK; Bashford CL; Edmonds DT; Pasternak CA
    Proc Biol Sci; 1993 Jun; 252(1335):187-92. PubMed ID: 7688899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative hydrophobic ions as transport-mediators for positive ions: evidence for a carrier mechanism.
    Stark G
    Biochim Biophys Acta; 1980 Jul; 600(1):233-7. PubMed ID: 7397172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid and divalent ion permeability of the pores formed by the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac in insect midgut brush border membrane vesicles.
    Kirouac M; Vachon V; Noël JF; Girard F; Schwartz JL; Laprade R
    Biochim Biophys Acta; 2002 Apr; 1561(2):171-9. PubMed ID: 11997117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation and anion transport through hydrophilic pores in lipid bilayers.
    Kandasamy SK; Larson RG
    J Chem Phys; 2006 Aug; 125(7):074901. PubMed ID: 16942374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes.
    Armstrong JA; Bernal EE; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Aug; 29(32):10287-96. PubMed ID: 23902372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH.
    Gerbeau P; Amodeo G; Henzler T; Santoni V; Ripoche P; Maurel C
    Plant J; 2002 Apr; 30(1):71-81. PubMed ID: 11967094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of ionic strength, divalent cations and pH on the pore-forming activity of Bacillus thuringiensis insecticidal toxins.
    Fortier M; Vachon V; Kirouac M; Schwartz JL; Laprade R
    J Membr Biol; 2005 Nov; 208(1):77-87. PubMed ID: 16596448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of ions in narrow water-filled pores.
    Edmonds DT
    Biosci Rep; 1998 Dec; 18(6):313-27. PubMed ID: 10357174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial potentials at the disk membranes of isolated intact cattle rod outer segments as a function of the occupation state of the intradiskal cation-exchange binding sites.
    Schnetkamp PP; Kaupp UB; Junge W
    Biochim Biophys Acta; 1981 Apr; 642(2):213-30. PubMed ID: 7284358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.
    Andreoli TE; Dennis VW; Weigl AM
    J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of unstirred layers in series with "tight" and "porous" lipid bilayer membranes.
    Andreoli TE; Troutman SL
    J Gen Physiol; 1971 Apr; 57(4):464-78. PubMed ID: 5549099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.