These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 8661509)
1. Na+-independent lysine transport in human intestinal Caco-2 cells. Thwaites DT; Markovich D; Murer H; Simmons NL J Membr Biol; 1996 Jun; 151(3):215-24. PubMed ID: 8661509 [TBL] [Abstract][Full Text] [Related]
2. Transepithelial taurine transport in caco-2 cell monolayers. Roig-Pérez S; Moretó M; Ferrer R J Membr Biol; 2005 Mar; 204(2):85-92. PubMed ID: 16151704 [TBL] [Abstract][Full Text] [Related]
3. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers. Thwaites DT; McEwan GT; Simmons NL J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025 [TBL] [Abstract][Full Text] [Related]
4. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains. Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093 [TBL] [Abstract][Full Text] [Related]
5. Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. Bertran J; Werner A; Chillarón J; Nunes V; Biber J; Testar X; Zorzano A; Estivill X; Murer H; Palacín M J Biol Chem; 1993 Jul; 268(20):14842-9. PubMed ID: 7686906 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells. Martín-Venegas R; Rodríguez-Lagunas MJ; Mercier Y; Geraert PA; Ferrer R Am J Physiol Cell Physiol; 2009 Mar; 296(3):C632-8. PubMed ID: 19144861 [TBL] [Abstract][Full Text] [Related]
7. Guanidine transport across the apical and basolateral membranes of human intestinal Caco-2 cells is mediated by two different mechanisms. Cova E; Laforenza U; Gastaldi G; Sambuy Y; Tritto S; Faelli A; Ventura U J Nutr; 2002 Jul; 132(7):1995-2003. PubMed ID: 12097682 [TBL] [Abstract][Full Text] [Related]
8. Characterization of amino acid transport systems in human placental basal membrane vesicles. Kudo Y; Boyd CA Biochim Biophys Acta; 1990 Jan; 1021(2):169-74. PubMed ID: 2302394 [TBL] [Abstract][Full Text] [Related]
9. The transport of cationic amino acids in human airway cells: expression of system y+L activity and transepithelial delivery of NOS inhibitors. Rotoli BM; Bussolati O; Sala R; Gazzola GC; Dall'Asta V FASEB J; 2005 May; 19(7):810-2. PubMed ID: 15746185 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Bertran J; Magagnin S; Werner A; Markovich D; Biber J; Testar X; Zorzano A; Kühn LC; Palacin M; Murer H Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5606-10. PubMed ID: 1376926 [TBL] [Abstract][Full Text] [Related]
11. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. Chillarón J; Estévez R; Mora C; Wagner CA; Suessbrich H; Lang F; Gelpí JL; Testar X; Busch AE; Zorzano A; Palacín M J Biol Chem; 1996 Jul; 271(30):17761-70. PubMed ID: 8663357 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of a cationic amino acid transport system in the basolateral membrane of the cat salivary epithelium. Mann GE; Wilson SM; Yudilevich DL J Physiol; 1984 Jun; 351():123-34. PubMed ID: 6431084 [TBL] [Abstract][Full Text] [Related]
14. Membrane transport of neuronal nitric oxide synthase substrate L-arginine is constitutively expressed with CAT1 and 4F2hc, but not CAT2 or rBAT. Stevens BR; Vo CB J Neurochem; 1998 Aug; 71(2):564-70. PubMed ID: 9681446 [TBL] [Abstract][Full Text] [Related]
15. Hepatic Na(+)-independent amino acid transport in endotoxemic rats: evidence for selective stimulation of arginine transport. Inoue Y; Bode BP; Souba WW Shock; 1994 Sep; 2(3):164-72. PubMed ID: 7743345 [TBL] [Abstract][Full Text] [Related]
16. Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. Furesz TC; Moe AJ; Smith CH Am J Physiol; 1995 Mar; 268(3 Pt 1):C755-61. PubMed ID: 7534987 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2). Chen J; Zhu Y; Hu M J Nutr; 1994 Oct; 124(10):1907-16. PubMed ID: 7931699 [TBL] [Abstract][Full Text] [Related]
18. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers. Nielsen CU; Carstensen M; Brodin B Eur J Pharm Biopharm; 2012 Jun; 81(2):458-62. PubMed ID: 22452873 [TBL] [Abstract][Full Text] [Related]
19. Two cationic amino acid transport systems in human placental basal plasma membranes. Furesz TC; Moe AJ; Smith CH Am J Physiol; 1991 Aug; 261(2 Pt 1):C246-52. PubMed ID: 1908186 [TBL] [Abstract][Full Text] [Related]
20. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA. Ishiia H; Sasaki Y; Goshima Y; Kanai Y; Endou H; Ayusawa D; Ono H; Miyamae T; Misu Y Biochim Biophys Acta; 2000 Jun; 1466(1-2):61-70. PubMed ID: 10825431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]