BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8661509)

  • 1. Na+-independent lysine transport in human intestinal Caco-2 cells.
    Thwaites DT; Markovich D; Murer H; Simmons NL
    J Membr Biol; 1996 Jun; 151(3):215-24. PubMed ID: 8661509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transepithelial taurine transport in caco-2 cell monolayers.
    Roig-Pérez S; Moretó M; Ferrer R
    J Membr Biol; 2005 Mar; 204(2):85-92. PubMed ID: 16151704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes.
    Bertran J; Werner A; Chillarón J; Nunes V; Biber J; Testar X; Zorzano A; Estivill X; Murer H; Palacín M
    J Biol Chem; 1993 Jul; 268(20):14842-9. PubMed ID: 7686906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells.
    Martín-Venegas R; Rodríguez-Lagunas MJ; Mercier Y; Geraert PA; Ferrer R
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C632-8. PubMed ID: 19144861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanidine transport across the apical and basolateral membranes of human intestinal Caco-2 cells is mediated by two different mechanisms.
    Cova E; Laforenza U; Gastaldi G; Sambuy Y; Tritto S; Faelli A; Ventura U
    J Nutr; 2002 Jul; 132(7):1995-2003. PubMed ID: 12097682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of amino acid transport systems in human placental basal membrane vesicles.
    Kudo Y; Boyd CA
    Biochim Biophys Acta; 1990 Jan; 1021(2):169-74. PubMed ID: 2302394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transport of cationic amino acids in human airway cells: expression of system y+L activity and transepithelial delivery of NOS inhibitors.
    Rotoli BM; Bussolati O; Sala R; Gazzola GC; Dall'Asta V
    FASEB J; 2005 May; 19(7):810-2. PubMed ID: 15746185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes.
    Bertran J; Magagnin S; Werner A; Markovich D; Biber J; Testar X; Zorzano A; Kühn LC; Palacin M; Murer H
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5606-10. PubMed ID: 1376926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids.
    Chillarón J; Estévez R; Mora C; Wagner CA; Suessbrich H; Lang F; Gelpí JL; Testar X; Busch AE; Zorzano A; Palacín M
    J Biol Chem; 1996 Jul; 271(30):17761-70. PubMed ID: 8663357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of a cationic amino acid transport system in the basolateral membrane of the cat salivary epithelium.
    Mann GE; Wilson SM; Yudilevich DL
    J Physiol; 1984 Jun; 351():123-34. PubMed ID: 6431084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1995 Mar; 1234(1):111-8. PubMed ID: 7880851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane transport of neuronal nitric oxide synthase substrate L-arginine is constitutively expressed with CAT1 and 4F2hc, but not CAT2 or rBAT.
    Stevens BR; Vo CB
    J Neurochem; 1998 Aug; 71(2):564-70. PubMed ID: 9681446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic Na(+)-independent amino acid transport in endotoxemic rats: evidence for selective stimulation of arginine transport.
    Inoue Y; Bode BP; Souba WW
    Shock; 1994 Sep; 2(3):164-72. PubMed ID: 7743345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane.
    Furesz TC; Moe AJ; Smith CH
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C755-61. PubMed ID: 7534987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2).
    Chen J; Zhu Y; Hu M
    J Nutr; 1994 Oct; 124(10):1907-16. PubMed ID: 7931699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.
    Nielsen CU; Carstensen M; Brodin B
    Eur J Pharm Biopharm; 2012 Jun; 81(2):458-62. PubMed ID: 22452873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two cationic amino acid transport systems in human placental basal plasma membranes.
    Furesz TC; Moe AJ; Smith CH
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C246-52. PubMed ID: 1908186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA.
    Ishiia H; Sasaki Y; Goshima Y; Kanai Y; Endou H; Ayusawa D; Ono H; Miyamae T; Misu Y
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):61-70. PubMed ID: 10825431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.