These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8661621)

  • 1. Testing of a GIS Model of Eucalyptus largiflorens Health on a Semiarid, Saline Floodplain.
    Taylor PJ; Walker GR; Hodgson G; Hatton TJ; Correll RL
    Environ Manage; 1996 Jul; 20(4):553-64. PubMed ID: 8661621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential.
    Zubrinich TM; Loveys B; Gallasch S; Seekamp JV; Tyerman SD
    Tree Physiol; 2000 Aug; 20(14):953-63. PubMed ID: 11303570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Eucalyptus largiflorens to floodplain salinisation.
    Akeroyd MD; Walker GR; Kendall MB
    Water Sci Technol; 2003; 48(7):113-20. PubMed ID: 14653641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does water status of Eucalyptus largiflorens (Myrtaceae) affect infection by the mistletoe Amyema miquelii (Loranthaceae)?
    Miller AC; Watling JR; Overton IC; Sinclair R
    Funct Plant Biol; 2003 Jan; 30(12):1239-1247. PubMed ID: 32689105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.
    Kaplan D; Muñoz-Carpena R; Wan Y; Hedgepeth M; Zheng F; Roberts R; Rossmanith R
    J Environ Qual; 2010; 39(5):1570-84. PubMed ID: 21043263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater salinity in a floodplain forest impacted by saltwater intrusion.
    Kaplan DA; Muñoz-Carpena R
    J Contam Hydrol; 2014 Nov; 169():19-36. PubMed ID: 24855904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.
    Schilling KE; Jacobson PJ; Vogelgesang JA
    J Environ Manage; 2015 Apr; 153():74-83. PubMed ID: 25687808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina.
    Jayawickreme DH; Santoni CS; Kim JH; Jobbágy EG; Jackson RB
    Ecol Appl; 2011 Oct; 21(7):2367-79. PubMed ID: 22073629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.
    Zolfaghar S; Villalobos-Vega R; Zeppel M; Cleverly J; Rumman R; Hingee M; Boulain N; Li Z; Eamus D
    Tree Physiol; 2017 Jul; 37(7):961-975. PubMed ID: 28369559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River.
    Xu H; Ye M; Song Y; Chen Y
    Environ Monit Assess; 2007 Aug; 131(1-3):37-48. PubMed ID: 17225962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation.
    Baird KJ; Stromberg JC; Maddock T
    Environ Manage; 2005 Oct; 36(4):551-64. PubMed ID: 16222461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China.
    Wang Y; Xiao D; Li Y; Li X
    Environ Monit Assess; 2008 May; 140(1-3):291-302. PubMed ID: 17690990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater.
    Mensforth LJ; Thorburn PJ; Tyerman SD; Walker GR
    Oecologia; 1994 Nov; 100(1-2):21-28. PubMed ID: 28307023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling.
    Russo TA; Fisher AT; Lockwood BS
    Ground Water; 2015; 53(3):389-400. PubMed ID: 24916466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.
    Venteris ER; Skaggs RL; Coleman AM; Wigmosta MS
    Environ Sci Technol; 2013 May; 47(9):4840-9. PubMed ID: 23495893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed assessment of spatial and temporal variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of Sajó River, Hungary.
    Bertalan L; Rodrigo-Comino J; Surian N; Šulc Michalková M; Kovács Z; Szabó S; Szabó G; Hooke J
    J Environ Manage; 2019 Oct; 248():109277. PubMed ID: 31349125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of newly imposed salinity and waterlogging on Eucalyptus gracilis in South Australia.
    Barrett MS; Preiss KA; Sinclair R
    Tree Physiol; 2005 Oct; 25(10):1339-46. PubMed ID: 16076782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.
    Egger G; Politti E; Lautsch E; Benjankar R; Gill KM; Rood SB
    J Environ Manage; 2015 Sep; 161():72-82. PubMed ID: 26160662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.
    Mogaji KA; Lim HS
    Environ Monit Assess; 2017 Jul; 189(7):321. PubMed ID: 28593561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River.
    Xu HL; Ye M; Li JM
    J Environ Sci (China); 2007; 19(10):1199-207. PubMed ID: 18062418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.