BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8661731)

  • 1. Microsatellites at a common site in the second ORF of L1 elements in mammalian genomes.
    Duffy AJ; Coltman DW; Wright JM
    Mamm Genome; 1996 May; 7(5):386-7. PubMed ID: 8661731
    [No Abstract]   [Full Text] [Related]  

  • 2. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era.
    Jurka J; Zietkiewicz E; Labuda D
    Nucleic Acids Res; 1995 Jan; 23(1):170-5. PubMed ID: 7870583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one.
    Burton FH; Loeb DD; Voliva CF; Martin SL; Edgell MH; Hutchison CA
    J Mol Biol; 1986 Jan; 187(2):291-304. PubMed ID: 3009828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation and evolution of (CT)n/(GA)n microsatellite sequences at orthologous positions in diverse mammalian genomes.
    Stallings RL
    Genomics; 1995 Jan; 25(1):107-13. PubMed ID: 7774907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation.
    Pascale E; Valle E; Furano AV
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9481-5. PubMed ID: 2251288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long interspersed L1 repeats in rabbit DNA are homologous to L1 repeats of rodents and primates in an open-reading-frame region.
    Demers GW; Brech K; Hardison RC
    Mol Biol Evol; 1986 May; 3(3):179-90. PubMed ID: 3444399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a new, abundant superfamily of mammalian LTR-transposons.
    Smit AF
    Nucleic Acids Res; 1993 Apr; 21(8):1863-72. PubMed ID: 8388099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and comparative analysis of the rabbit alpha-like globin gene cluster reveals a rapid mode of evolution in a G + C-rich region of mammalian genomes.
    Hardison R; Krane D; Vandenbergh D; Cheng JF; Mansberger J; Taddie J; Schwartz S; Huang XQ; Miller W
    J Mol Biol; 1991 Nov; 222(2):233-49. PubMed ID: 1960725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat.
    Hoekstra R; Criado-Fornelio A; Fakkeldij J; Bergman J; Roos MH
    Mol Biochem Parasitol; 1997 Oct; 89(1):97-107. PubMed ID: 9297704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: implications for human genetic diseases.
    Stallings RL
    Genomics; 1994 May; 21(1):116-21. PubMed ID: 8088779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MIRs are present in coding regions of human genes.
    Tulko JS; Korotkov EV; Phoenix DA
    DNA Seq; 1997; 8(1-2):31-8. PubMed ID: 9522118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man.
    Kazazian HH; Wong C; Youssoufian H; Scott AF; Phillips DG; Antonarakis SE
    Nature; 1988 Mar; 332(6160):164-6. PubMed ID: 2831458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species.
    Moore SS; Sargeant LL; King TJ; Mattick JS; Georges M; Hetzel DJ
    Genomics; 1991 Jul; 10(3):654-60. PubMed ID: 1889811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters.
    Hardison R; Miller W
    Mol Biol Evol; 1993 Jan; 10(1):73-102. PubMed ID: 8383794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silene tatarica microsatellites are frequently located in repetitive DNA.
    Tero N; Neumeier H; Gudavalli R; Schlötterer C
    J Evol Biol; 2006 Sep; 19(5):1612-9. PubMed ID: 16910990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs.
    Malik HS; Eickbush TH
    Mol Biol Evol; 1998 Sep; 15(9):1123-34. PubMed ID: 9729877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIRs as agents of mammalian gene evolution.
    Hughes DC
    Trends Genet; 2000 Feb; 16(2):60-2. PubMed ID: 10652530
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of equine microsatellites and microsatellite-linked repetitive elements (eMLREs) by efficient cloning and genotyping methods.
    Tozaki T; Mashima S; Hirota K; Miura N; Choi-Miura NH; Tomita M
    DNA Res; 2001 Feb; 8(1):33-45. PubMed ID: 11258798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary conservation of possible functional domains of the human and murine XIST genes.
    Hendrich BD; Brown CJ; Willard HF
    Hum Mol Genet; 1993 Jun; 2(6):663-72. PubMed ID: 8353487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a theta plasmid replicon with homology to all four large plasmids of Bacillus megaterium QM B1551.
    Stevenson DM; Kunnimalaiyaan M; Müller K; Vary PS
    Plasmid; 1998 Nov; 40(3):175-89. PubMed ID: 9806855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.