These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8661777)

  • 1. An effect of Ca2+ on the Intrinsic Cl(-)-conductance of rat kidney cortex brush border membrane vesicles.
    Vayro S; Simmons NL
    J Membr Biol; 1996 Mar; 150(2):163-73. PubMed ID: 8661777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression of an anion conductance pathway with Na(+)-glucose cotransport in rat renal brush-border membrane vesicles.
    Brown CD; King N; Simmons NL
    Pflugers Arch; 1993 Jun; 423(5-6):406-10. PubMed ID: 7688890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic Cl- conductance of mouse kidney cortex brush-border membrane vesicles is not related to CFTR.
    King N; Colledge WH; Ratcliff R; Evans MJ; Simmons NL
    Pflugers Arch; 1997 Sep; 434(5):575-80. PubMed ID: 9242721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-induced inhibition of taurine transport in brush-border membrane vesicles from rabbit small intestine.
    Miyamoto Y; Kulanthaivel P; Ganapathy V; Whitford GM; Leibach FH
    Biochim Biophys Acta; 1990 Dec; 1030(2):189-94. PubMed ID: 2124507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ca on Na-D-glucose cotransport across isolated renal brush-border membranes.
    Lin JT; Xu ZJ; Lovelace C; Windhager EE; Heinz E
    Am J Physiol; 1989 Jul; 257(1 Pt 2):F126-36. PubMed ID: 2750917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium/calmodulin inhibition of coupled NaCl transport in membrane vesicles from rabbit ileal brush border.
    Fan CC; Powell DW
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5248-52. PubMed ID: 6412227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)-dependent protein kinases modulate proline transport across the renal brush-border membrane.
    Zelikovic I; Przekwas J
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F155-62. PubMed ID: 7840241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proline transport by brush-border membrane vesicles of lobster antennal glands.
    Behnke RD; Wong RK; Huse SM; Reshkin SJ; Ahearn GA
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F311-20. PubMed ID: 2155538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of salt permeabilities of intestinal brush-border membrane vesicles by micromolar levels of internal calcium.
    Vaandrager AB; Ploemacher MC; de Jonge HR
    Biochim Biophys Acta; 1986 Apr; 856(2):325-36. PubMed ID: 3955045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG; Yee VJ
    J Clin Invest; 1981 Jan; 67(1):103-15. PubMed ID: 7451645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thyroxine administration on phosphate transport across renal cortical brush border membrane.
    Espinosa RE; Keller MJ; Yusufi AN; Dousa TP
    Am J Physiol; 1984 Feb; 246(2 Pt 2):F133-9. PubMed ID: 6696115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of heterogeneity of Na(+)-Pi cotransport in superficial and juxtamedullary renal cortex.
    Loghman-Adham M
    Biochim Biophys Acta; 1992 Mar; 1105(1):67-74. PubMed ID: 1533161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies of oxalate efflux and oxalate transport via anion exchange in rat renal brush border membrane vesicles].
    Nishibuchi S; Okada Y; Yoshida O
    Nihon Jinzo Gakkai Shi; 1989 Jan; 31(1):57-65. PubMed ID: 2747000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane.
    Szczepanska-Konkel M; Yusufi AN; VanScoy M; Webster SK; Dousa TP
    J Biol Chem; 1986 May; 261(14):6375-83. PubMed ID: 3009455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct effect of cadmium on citrate uptake by isolated rat renal brush border membrane vesicles.
    Sato K; Kusaka Y; Okada K
    Toxicol Lett; 1995 Oct; 80(1-3):161-5. PubMed ID: 7482584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the chloride conductance in porcine renal brush-border membrane vesicles.
    Krick W; Dölle A; Hagos Y; Burckhardt G
    Pflugers Arch; 1998 Feb; 435(3):415-21. PubMed ID: 9426299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurine transport by rabbit kidney brush-border membranes: coupling to sodium, chloride, and the membrane potential.
    Wolff NA; Kinne R
    J Membr Biol; 1988 May; 102(2):131-9. PubMed ID: 3418686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.