These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8661869)
1. Cesium stress and adaptation in Pseudomonas fluorescens. Appanna VD; Gazsó LG; Huang J; St Pierre M Bull Environ Contam Toxicol; 1996 May; 56(5):833-8. PubMed ID: 8661869 [No Abstract] [Full Text] [Related]
2. Mechanism of chromium detoxification in Pseudomonas fluorescens is dependent on iron. Appanna VD; Gazsó LG; Huang J; St Pierre M Bull Environ Contam Toxicol; 1996 Dec; 57(6):875-80. PubMed ID: 8875833 [No Abstract] [Full Text] [Related]
3. Bioaccumulation of yttrium in Pseudomonas fluorescens. Appanna VD; Huang J Bull Environ Contam Toxicol; 1992 Oct; 49(4):620-5. PubMed ID: 1421858 [No Abstract] [Full Text] [Related]
4. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480 [TBL] [Abstract][Full Text] [Related]
5. [Study of the growth of a strain of Pseudomonas fluorescens, R type. 3. Role of Fe 3+ ions]. Wurtz B C R Seances Soc Biol Fil; 1971; 165(12):2436-41. PubMed ID: 4263382 [No Abstract] [Full Text] [Related]
6. Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium. al-Aoukaty A; Appanna VD; Huang J FEMS Microbiol Lett; 1991 Oct; 67(3):283-90. PubMed ID: 1769535 [TBL] [Abstract][Full Text] [Related]
7. [Effect of ozonization on bacterial breakdown of dyes]. Rotmistrov MN; Udod VM; Vengzhen GS; Kerzhner BK Mikrobiol Zh (1978); 1980; 42(2):163-6. PubMed ID: 6770234 [No Abstract] [Full Text] [Related]
8. Gallium toxicity and adaptation in Pseudomonas fluorescens. al-Aoukaty A; Appanna VD; Falter H FEMS Microbiol Lett; 1992 May; 71(3):265-72. PubMed ID: 1624126 [TBL] [Abstract][Full Text] [Related]
9. [Role of alkyloxybenzenes in bacterial adaptation to unfavorable growth conditions ]. Nikolaev IuA; Borzenkov IA; Tarasov AL; Loĭko NG; Kozlova AN; Gal'chenko VF; El'-Registan GI Mikrobiologiia; 2010; 79(6):760-6. PubMed ID: 21774158 [No Abstract] [Full Text] [Related]
10. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons]. Soroka IaM; Samoĭlenko LS; Gvozdiak PI Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266 [TBL] [Abstract][Full Text] [Related]
11. Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Gómez-Sagasti MT; Becerril JM; Epelde L; Alkorta I; Garbisu C Cell Biol Toxicol; 2015 Feb; 31(1):39-81. PubMed ID: 25754557 [TBL] [Abstract][Full Text] [Related]
12. [Resistance of bacteria of the genus Pseudomonas to hexavalent chromium compounds and the capacity for their reduction]. Kvasnikov EI; Kliushnikova TM; Kasatkina TP; Kiprianova EA; Boĭko OI Mikrobiol Zh (1978); 1988; 50(6):24-7. PubMed ID: 3150515 [No Abstract] [Full Text] [Related]
13. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms. Jeyalakshmi D; Kanmani S J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919 [TBL] [Abstract][Full Text] [Related]
15. Effect of iron-beryllium antagonism on the growth of Pseudomonas fluorescens type S. MacCordick J; Youinou MT; Wurtz B Folia Microbiol (Praha); 1977; 22(1):35-9. PubMed ID: 190091 [TBL] [Abstract][Full Text] [Related]
16. Evidences of non-reactive mercury-selenium compounds generated from cultures of Pseudomonas fluorescens. Yang DY; Chen YW; Belzile N Sci Total Environ; 2011 Apr; 409(9):1697-703. PubMed ID: 21316739 [TBL] [Abstract][Full Text] [Related]
17. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens. Sakthipriya N; Doble M; Sangwai JS Environ Sci Process Impacts; 2016 Mar; 18(3):386-97. PubMed ID: 26875795 [TBL] [Abstract][Full Text] [Related]
18. [Effect of a beryllium complex on growth of Pseudomonas fluorescens (types R and S). I. Influence on the lag phase]. MacCordick J; Hornsperger JM; Wurtz B C R Seances Soc Biol Fil; 1975; 169(2):415-21. PubMed ID: 126778 [TBL] [Abstract][Full Text] [Related]
19. The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. Minnikin DE; Abdolrahimzadeh H FEBS Lett; 1974 Aug; 43(3):257-60. PubMed ID: 4213476 [No Abstract] [Full Text] [Related]
20. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Edberg F; Kalinowski BE; Holmström SJ; Holm K Geobiology; 2010 Sep; 8(4):278-92. PubMed ID: 20456501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]