BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8661969)

  • 1. Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering.
    Fratzl P; Schreiber S; Boyde A
    Calcif Tissue Int; 1996 May; 58(5):341-6. PubMed ID: 8661969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone mineralization as studied by small-angle x-ray scattering.
    Fratzl P; Schreiber S; Klaushofer K
    Connect Tissue Res; 1996; 34(4):247-54. PubMed ID: 9084633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral crystals in calcified tissues: a comparative study by SAXS.
    Fratzl P; Groschner M; Vogl G; Plenk H; Eschberger J; Fratzl-Zelman N; Koller K; Klaushofer K
    J Bone Miner Res; 1992 Mar; 7(3):329-34. PubMed ID: 1585835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering.
    Fratzl P; Fratzl-Zelman N; Klaushofer K; Vogl G; Koller K
    Calcif Tissue Int; 1991 Jun; 48(6):407-13. PubMed ID: 2070275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone.
    Sasaki N; Ikawa T; Fukuda A
    J Biomech; 1991; 24(1):57-61. PubMed ID: 1851177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy.
    Sasaki N; Matsushima N; Ikawa T; Yamamura H; Fukuda A
    J Biomech; 1989; 22(2):157-64. PubMed ID: 2540205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius.
    Riggs CM; Vaughan LC; Evans GP; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):239-48. PubMed ID: 8470824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.
    Bacon GE; Goodship AE
    J Anat; 1991 Dec; 179():15-22. PubMed ID: 1817133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphology of bone mineral as revealed by small-angle X-ray scattering.
    Matsushima N; Akiyama M; Terayama Y; Izumi Y; Miyake Y
    Biochim Biophys Acta; 1984 Sep; 801(2):298-305. PubMed ID: 6477966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantitative study of the orientation of collagen in compact bone slices.
    Boyde A; Riggs CM
    Bone; 1990; 11(1):35-9. PubMed ID: 2331429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy.
    Camacho NP; Rinnerthaler S; Paschalis EP; Mendelsohn R; Boskey AL; Fratzl P
    Bone; 1999 Sep; 25(3):287-93. PubMed ID: 10495132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius.
    Riggs CM; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):231-8. PubMed ID: 8470823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations.
    Fratzl-Zelman N; Schmidt I; Roschger P; Glorieux FH; Klaushofer K; Fratzl P; Rauch F; Wagermaier W
    Bone; 2014 Mar; 60():122-8. PubMed ID: 24296239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering.
    Fratzl P; Paris O; Klaushofer K; Landis WJ
    J Clin Invest; 1996 Jan; 97(2):396-402. PubMed ID: 8567960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in collagen and mineral nanostructure observed in osteoporosis and pharmaceutical treatments using simultaneous small- and wide-angle X-ray scattering.
    Acerbo AS; Kwaczala AT; Yang L; Judex S; Miller LM
    Calcif Tissue Int; 2014 Nov; 95(5):446-56. PubMed ID: 25190190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.
    Raghavan M; Sahar ND; Wilson RH; Mycek MA; Pleshko N; Kohn DH; Morris MD
    J Biomed Opt; 2010; 15(3):037001. PubMed ID: 20615030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray pole figure analysis of apatite crystals and collagen molecules in bone.
    Sasaki N; Sudoh Y
    Calcif Tissue Int; 1997 Apr; 60(4):361-7. PubMed ID: 9075634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering.
    Pabisch S; Wagermaier W; Zander T; Li C; Fratzl P
    Methods Enzymol; 2013; 532():391-413. PubMed ID: 24188777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.