These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 8662197)
21. Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. Duvall MR; Morton BR Mol Phylogenet Evol; 1996 Apr; 5(2):352-8. PubMed ID: 8728393 [TBL] [Abstract][Full Text] [Related]
22. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Gielly L; Taberlet P Mol Biol Evol; 1994 Sep; 11(5):769-77. PubMed ID: 7968490 [TBL] [Abstract][Full Text] [Related]
23. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Lee HL; Jansen RK; Chumley TW; Kim KJ Mol Biol Evol; 2007 May; 24(5):1161-80. PubMed ID: 17329229 [TBL] [Abstract][Full Text] [Related]
24. Rice chloroplast RNA polymerase genes: the absence of an intron in rpoC1 and the presence of an extra sequence in rpoC2. Shimada H; Fukuta M; Ishikawa M; Sugiura M Mol Gen Genet; 1990 May; 221(3):395-402. PubMed ID: 2381420 [TBL] [Abstract][Full Text] [Related]
25. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Chung SM; Staub JE Theor Appl Genet; 2003 Aug; 107(4):757-67. PubMed ID: 12827249 [TBL] [Abstract][Full Text] [Related]
26. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Hsiao C; Chatterton NJ; Asay KH; Jensen KB Genome; 1994 Feb; 37(1):112-20. PubMed ID: 8181731 [TBL] [Abstract][Full Text] [Related]
27. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA. Hochbach A; Schneider J; Röser M Mol Phylogenet Evol; 2015 Jun; 87():14-27. PubMed ID: 25804934 [TBL] [Abstract][Full Text] [Related]
28. An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. Diekmann K; Hodkinson TR; Fricke E; Barth S PLoS One; 2008 Jul; 3(7):e2813. PubMed ID: 18665252 [TBL] [Abstract][Full Text] [Related]
29. Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Boudreau E; Turmel M Plant Mol Biol; 1995 Jan; 27(2):351-64. PubMed ID: 7888624 [TBL] [Abstract][Full Text] [Related]
30. Extensive gene rearrangements in the chloroplast DNAs of Chlamydomonas species featuring multiple dispersed repeats. Boudreau E; Turmel M Mol Biol Evol; 1996 Jan; 13(1):233-43. PubMed ID: 8583896 [TBL] [Abstract][Full Text] [Related]
31. Analysis of a hotspot for deletion formation within the intron of the chloroplast trnI gene. Johnson DA; Hattori J Genome; 1996 Oct; 39(5):999-1005. PubMed ID: 8890524 [TBL] [Abstract][Full Text] [Related]
32. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms. Bausher MG; Singh ND; Lee SB; Jansen RK; Daniell H BMC Plant Biol; 2006 Sep; 6():21. PubMed ID: 17010212 [TBL] [Abstract][Full Text] [Related]
33. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Mason-Gamer RJ; Orme NL; Anderson CM Genome; 2002 Dec; 45(6):991-1002. PubMed ID: 12502243 [TBL] [Abstract][Full Text] [Related]
34. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Goremykin V; Bobrova V; Pahnke J; Troitsky A; Antonov A; Martin W Mol Biol Evol; 1996 Feb; 13(2):383-96. PubMed ID: 8587503 [TBL] [Abstract][Full Text] [Related]
35. Complete structure and variation of the chloroplast genome of Agropyron cristatum (L.) Gaertn. Chen N; Sha LN; Dong ZZ; Tang C; Wang Y; Kang HY; Zhang HQ; Yan XB; Zhou YH; Fan X Gene; 2018 Jan; 640():86-96. PubMed ID: 29030254 [TBL] [Abstract][Full Text] [Related]
36. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae. de Cambiaire JC; Otis C; Turmel M; Lemieux C BMC Genomics; 2007 Jul; 8():213. PubMed ID: 17610731 [TBL] [Abstract][Full Text] [Related]
37. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae. Guisinger MM; Chumley TW; Kuehl JV; Boore JL; Jansen RK J Mol Evol; 2010 Feb; 70(2):149-66. PubMed ID: 20091301 [TBL] [Abstract][Full Text] [Related]
38. Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genomes of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses. Vijverberg K; Bachmann K Mol Biol Evol; 1999 Oct; 16(10):1329-40. PubMed ID: 10563014 [TBL] [Abstract][Full Text] [Related]
39. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Do HD; Kim JS; Kim JH Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725 [TBL] [Abstract][Full Text] [Related]
40. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Kim KJ; Choi KS; Jansen RK Mol Biol Evol; 2005 Sep; 22(9):1783-92. PubMed ID: 15917497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]