BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8662265)

  • 1. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs.
    Ricci AJ; Rennie KJ; Correia MJ
    Pflugers Arch; 1996 May; 432(1):34-42. PubMed ID: 8662265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium currents in mammalian and avian isolated type I semicircular canal hair cells.
    Rennie KJ; Correia MJ
    J Neurophysiol; 1994 Jan; 71(1):317-29. PubMed ID: 8158233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of solitary semicircular canal hair cells in the adult pigeon. II. Voltage-dependent ionic conductances.
    Lang DG; Correia MJ
    J Neurophysiol; 1989 Oct; 62(4):935-45. PubMed ID: 2478671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtering properties of vestibular hair cells: an update.
    Correia MJ; Ricci AJ; Rennie KJ
    Ann N Y Acad Sci; 1996 Jun; 781():138-49. PubMed ID: 8694411
    [No Abstract]   [Full Text] [Related]  

  • 5. Vestibular type I and type II hair cells. 1: Morphometric identification in the pigeon and gerbil.
    Ricci AJ; Rennie KJ; Cochran SL; Kevetter GA; Correia MJ
    J Vestib Res; 1997; 7(5):393-406. PubMed ID: 9376913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A delayed rectifier conductance in type I hair cells of the mouse utricle.
    RĂ¼sch A; Eatock RA
    J Neurophysiol; 1996 Aug; 76(2):995-1004. PubMed ID: 8871214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional distribution of ionic currents and membrane voltage responses of type II hair cells in the vestibular neuroepithelium.
    Weng T; Correia MJ
    J Neurophysiol; 1999 Nov; 82(5):2451-61. PubMed ID: 10561418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs.
    Haden M; Einarsson R; Yazejian B
    Neuroscience; 2013 Sep; 248():79-87. PubMed ID: 23747350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration.
    Masetto S; Correia MJ
    J Neurophysiol; 1997 Oct; 78(4):1913-27. PubMed ID: 9325360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A delayed rectifier conductance shapes the voltage response of type I hair cells.
    Ricci AJ; Rennie KJ; Correia MJ
    Ann N Y Acad Sci; 1996 Jun; 781():690-2. PubMed ID: 8694478
    [No Abstract]   [Full Text] [Related]  

  • 11. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide.
    Chen JW; Eatock RA
    J Neurophysiol; 2000 Jul; 84(1):139-51. PubMed ID: 10899192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kvbeta1.1 associates with Kvalpha1.4 in Chinese hamster ovary cells and pigeon type II vestibular hair cells and enhances the amplitude, inactivation and negatively shifts the steady-state inactivation range.
    Correia MJ; Weng T; Prusak D; Wood TG
    Neuroscience; 2008 Mar; 152(3):809-20. PubMed ID: 18313857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical response properties of avian lagena type II hair cells: a model system for vestibular filtering.
    Ricci AJ; Correia MJ
    Am J Physiol; 1999 Apr; 276(4):R943-53. PubMed ID: 10198371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of solitary semicircular canal hair cells in the adult pigeon. I. Frequency- and time-domain analysis of active and passive membrane properties.
    Correia MJ; Christensen BN; Moore LE; Lang DG
    J Neurophysiol; 1989 Oct; 62(4):924-34. PubMed ID: 2809711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular type I and type II hair cells. 2: Morphometric comparisons of dissociated pigeon hair cells.
    Ricci AJ; Cochran SL; Rennie KJ; Correia MJ
    J Vestib Res; 1997; 7(5):407-20. PubMed ID: 9376914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrophysiological comparison of solitary type I and type II vestibular hair cells.
    Correia MJ; Lang DG
    Neurosci Lett; 1990 Aug; 116(1-2):106-11. PubMed ID: 2259440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium currents in type II vestibular hair cells isolated from the guinea-pig's crista ampullaris.
    Griguer C; Kros CJ; Sans A; Lehouelleur J
    Pflugers Arch; 1993 Nov; 425(3-4):344-52. PubMed ID: 8060388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.
    Meredith FL; Rennie KJ
    Hear Res; 2016 Aug; 338():40-51. PubMed ID: 26836968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.
    Brichta AM; Aubert A; Eatock RA; Goldberg JM
    J Neurophysiol; 2002 Dec; 88(6):3259-78. PubMed ID: 12466445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.