These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8662492)

  • 1. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles.
    Ahmadi TS; Wang ZL; Green TC; Henglein A; El-Sayed MA
    Science; 1996 Jun; 272(5270):1924-6. PubMed ID: 8662492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology.
    Long NV; Chien ND; Hayakawa T; Hirata H; Lakshminarayana G; Nogami M
    Nanotechnology; 2010 Jan; 21(3):035605. PubMed ID: 19966396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity.
    Lee I; Morales R; Albiter MA; Zaera F
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15241-6. PubMed ID: 18832170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction.
    Narayanan R; El-Sayed MA
    Langmuir; 2005 Mar; 21(5):2027-33. PubMed ID: 15723506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics.
    Pootawang P; Saito N; Lee SY
    Nanotechnology; 2013 Feb; 24(5):055604. PubMed ID: 23324223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions.
    Wu Y; Cai S; Wang D; He W; Li Y
    J Am Chem Soc; 2012 May; 134(21):8975-81. PubMed ID: 22519877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction.
    Narayanan R; El-Sayed MA
    J Am Chem Soc; 2004 Jun; 126(23):7194-5. PubMed ID: 15186154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Poly (allylamine)-stabilized colloidal copper nanoparticles: synthesis and their SERS activities].
    Wang YF; Xiao ZM; Zhang CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1559-61. PubMed ID: 22870639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles.
    Sánchez-Sánchez CM; Solla-Gullón J; Vidal-Iglesias FJ; Aldaz A; Montiel V; Herrero E
    J Am Chem Soc; 2010 Apr; 132(16):5622-4. PubMed ID: 20359217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrapment of metal nanoparticles in polymer stomatocytes.
    Wilson DA; Nolte RJ; van Hest JC
    J Am Chem Soc; 2012 Jun; 134(24):9894-7. PubMed ID: 22676061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.
    Mahmoud MA; Narayanan R; El-Sayed MA
    Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports.
    Kim J; Bae YS; Lee H
    Nanoscale; 2014 Nov; 6(21):12540-6. PubMed ID: 25177923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent shape distributions of platinum nanoparticles.
    Ding R; Padilla Espinosa IM; Loevlie D; Azadehranjbar S; Baker AJ; Mpourmpakis G; Martini A; Jacobs TDB
    Nanoscale Adv; 2022 Sep; 4(18):3978-3986. PubMed ID: 36133342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures.
    Harada M; Abe D; Kimura Y
    J Colloid Interface Sci; 2005 Dec; 292(1):113-21. PubMed ID: 16024035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide.
    Tang Z; Geng D; Lu G
    J Colloid Interface Sci; 2005 Jul; 287(1):159-66. PubMed ID: 15914161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TEM and HRTEM evidence for the role of ligands in the formation of shape-controlled platinum nanoparticles.
    Axet MR; Philippot K; Chaudret B; Cabié M; Giorgio S; Henry CR
    Small; 2011 Jan; 7(2):235-41. PubMed ID: 21213388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles.
    Viswanathan V; Wang FY
    Nanoscale; 2012 Aug; 4(16):5110-7. PubMed ID: 22785611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal metal nanoparticles as a component of designed catalyst.
    Jia CJ; Schüth F
    Phys Chem Chem Phys; 2011 Feb; 13(7):2457-87. PubMed ID: 21246127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles.
    Khurshid H; Li W; Chandra S; Phan MH; Hadjipanayis GC; Mukherjee P; Srikanth H
    Nanoscale; 2013 Sep; 5(17):7942-52. PubMed ID: 23857290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-dispersed bicontinuous cubic glycolipid nanoparticles.
    Abraham T; Hato M; Hirai M
    Biotechnol Prog; 2005; 21(1):255-62. PubMed ID: 15903264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.