These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8662498)

  • 1. New designs of macroporous polymers and supports: from separation to biocatalysis.
    Svec F; Fréchet JM
    Science; 1996 Jul; 273(5272):205-11. PubMed ID: 8662498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous polymer monoliths: an alternative to classical beads.
    Xie S; Allington RW; Fréchet JM; Svec F
    Adv Biochem Eng Biotechnol; 2002; 76():87-125. PubMed ID: 12126272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins.
    Tennikov MB; Gazdina NV; Tennikova TB; Svec F
    J Chromatogr A; 1998 Mar; 798(1-2):55-64. PubMed ID: 9542126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric porogens used in the preparation of novel monodispersed macroporous polymeric separation media for high-performance liquid chromatography.
    Wang QC; Hosoya K; Svec F; Fréchet JM
    Anal Chem; 1992 Jun; 64(11):1232-8. PubMed ID: 1621992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional high-performance liquid chromatography using monodisperse polymer beads containing segregated chemistries prepared by pore size specific functionalization. Single-column combinations of size exclusion or ion exchange with reversed-phase chromatography.
    Smigol V; Svec F; Fréchet JM
    Anal Chem; 1994 Dec; 66(23):4308-15. PubMed ID: 7847631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and HPLC applications of rigid macroporous organic polymer monoliths.
    Svec F
    J Sep Sci; 2004 Jul; 27(10-11):747-66. PubMed ID: 15354553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process.
    Volokitina MV; Nikitina AV; Tennikova TB; Korzhikova-Vlakh EG
    Electrophoresis; 2017 Nov; 38(22-23):2931-2939. PubMed ID: 28834560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.
    Svec F
    Electrophoresis; 2006 Mar; 27(5-6):947-61. PubMed ID: 16470758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Multistep DNA Processing by Solid-Phase Enzyme Catalysis on Polyethylene Glycol Coated Beads.
    Li S; Zhang A; Zatopek K; Parvez S; Gardner AF; Corrêa IR; Noren CJ; Xu MQ
    Bioconjug Chem; 2018 Jul; 29(7):2316-2324. PubMed ID: 29864273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins.
    Qin L; He XW; Zhang W; Li WY; Zhang YK
    J Chromatogr A; 2009 Jan; 1216(5):807-14. PubMed ID: 19111313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPLC of structural isomers with cyclodextrin-poly(vinylamine)-coated silica columns, Part I: Synthesis and characterization of cyclodextrin-bonded stationary phases by NMR solid state.
    Crini G; Morcellet M; Torri G
    J Chromatogr Sci; 1996 Nov; 34(11):477-84. PubMed ID: 8896356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New packing materials for protein chromatography.
    Leonard M
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):3-27. PubMed ID: 9392365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer supports in organic catalysis and synthesis.
    Bergbreiter DE
    Curr Opin Drug Discov Devel; 2001 Nov; 4(6):736-44. PubMed ID: 11899613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using two photon microscopy to quantify enzymatic reaction rates on polymer beads.
    Bosma AY; Ulijn RV; McConnell G; Girkin J; Halling PJ; Flitsch SL
    Chem Commun (Camb); 2003 Nov; (22):2790-1. PubMed ID: 14651106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroporous monoliths for biodegradation study of polymer particles considered as drug delivery systems.
    Volokitina MV; Korzhikov-Vlakh VA; Tennikova TB; Korzhikova-Vlakh EG
    J Pharm Biomed Anal; 2017 Oct; 145():169-177. PubMed ID: 28666163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation of large-pore silica microspheres using templating method and their applications to protein separation with high performance liquid chromatography].
    Niu M; Ma H; Hu F; Wang S; Liu L; Chang H; Huang M
    Se Pu; 2017 Jun; 35(6):565-571. PubMed ID: 29048781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New formats of polymeric stationary phases for HPLC separations: molded macroporous disks and rods.
    Svec F; Fréchet JM
    J Mol Recognit; 1996; 9(5-6):326-34. PubMed ID: 9174906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe3O4/SiO2-g-PSStNa polymer nanocomposite microspheres (PNCMs) from a surface-initiated atom transfer radical polymerization (SI-ATRP) approach for pectinase immobilization.
    Lei Z; Ren N; Li Y; Li N; Mu B
    J Agric Food Chem; 2009 Feb; 57(4):1544-9. PubMed ID: 19199599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-through enzymatic reactors using polymer monoliths: From motivation to application.
    Mao Y; Fan R; Li R; Ye X; Kulozik U
    Electrophoresis; 2021 Dec; 42(24):2599-2614. PubMed ID: 33314167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing.
    Korzhikova-Vlakh EG; Platonova GA; Tennikova TB
    Methods Mol Biol; 2021; 2178():251-284. PubMed ID: 33128755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.