These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 8662797)

  • 1. Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments). Evidence for ubiquitinylation of Gt and rhodopsin.
    Obin MS; Jahngen-Hodge J; Nowell T; Taylor A
    J Biol Chem; 1996 Jun; 271(24):14473-84. PubMed ID: 8662797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of ubiquitin-dependent proteolysis of rod outer segment proteins in reticulocyte lysate and a retinal pigment epithelial cell line.
    Obin M; Nowell T; Taylor A
    Curr Eye Res; 1995 Sep; 14(9):751-60. PubMed ID: 8529413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitinylation of transcription factors c-Jun and c-Fos using reconstituted ubiquitinylating enzymes.
    Hermida-Matsumoto ML; Chock PB; Curran T; Yang DC
    J Biol Chem; 1996 Mar; 271(9):4930-6. PubMed ID: 8617766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photoreceptor G-protein transducin (Gt) is a substrate for ubiquitin-dependent proteolysis.
    Obin M; Nowell T; Taylor A
    Biochem Biophys Res Commun; 1994 May; 200(3):1169-76. PubMed ID: 8185564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transducin activation in electropermeabilized frog rod outer segments is highly amplified, and a portion equivalent to phosphodiesterase remains membrane-bound.
    Gray-Keller MP; Biernbaum MS; Bownds MD
    J Biol Chem; 1990 Sep; 265(25):15323-32. PubMed ID: 2168406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin.
    Willardson BM; Pou B; Yoshida T; Bitensky MW
    J Biol Chem; 1993 Mar; 268(9):6371-82. PubMed ID: 8454608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress.
    Jahngen-Hodge J; Obin MS; Gong X; Shang F; Nowell TR; Gong J; Abasi H; Blumberg J; Taylor A
    J Biol Chem; 1997 Nov; 272(45):28218-26. PubMed ID: 9353272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP-dependent phosphoprotein components I and II interact with beta gamma subunits of transducin in frog rod outer segments.
    Suh KH; Hamm HE
    Biochemistry; 1996 Jan; 35(1):290-8. PubMed ID: 8555187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides.
    Fawzi AB; Northup JK
    Biochemistry; 1990 Apr; 29(15):3804-12. PubMed ID: 2187531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin system.
    Hershko A; Ciechanover A
    Annu Rev Biochem; 1998; 67():425-79. PubMed ID: 9759494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rabbit reticulocyte ubiquitin carrier protein that supports ubiquitin-dependent proteolysis (E214k) is homologous to the yeast DNA repair gene RAD6.
    Wing SS; Dumas F; Banville D
    J Biol Chem; 1992 Apr; 267(10):6495-501. PubMed ID: 1313008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
    Seno K; Hayashi F
    J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes.
    Morizumi T; Imai H; Shichida Y
    Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-dependent proteolysis and the role of ubiquitin in rabbit cardiac muscle.
    Gehrke PP; Jennissen HP
    Biol Chem Hoppe Seyler; 1987 Jun; 368(6):691-708. PubMed ID: 3040036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ATP-stabilized inhibitor of the proteasome is a component of the 1500-kDa ubiquitin conjugate-degrading complex.
    Driscoll J; Frydman J; Goldberg AL
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4986-90. PubMed ID: 1317579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.