These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8662820)

  • 1. The contributions of aspartyl residues in the acetylcholine receptor gamma and delta subunits to the binding of agonists and competitive antagonists.
    Martin M; Czajkowski C; Karlin A
    J Biol Chem; 1996 Jun; 271(23):13497-503. PubMed ID: 8662820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctions in agonist and antagonist specificity conferred by anionic residues of the nicotinic acetylcholine receptor.
    Osaka H; Sugiyama N; Taylor P
    J Biol Chem; 1998 May; 273(21):12758-65. PubMed ID: 9582301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors.
    Arias HR
    Neurochem Int; 2000 Jun; 36(7):595-645. PubMed ID: 10771117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extracellular linker of muscle acetylcholine receptor channels is a gating control element.
    Grosman C; Salamone FN; Sine SM; Auerbach A
    J Gen Physiol; 2000 Sep; 116(3):327-40. PubMed ID: 10962011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional effects on the acetylcholine receptor of multiple mutations of gamma Asp174 and delta Asp180.
    Martin MD; Karlin A
    Biochemistry; 1997 Sep; 36(35):10742-50. PubMed ID: 9271505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity.
    Prince RJ; Sine SM
    J Biol Chem; 1996 Oct; 271(42):25770-7. PubMed ID: 8824205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues alphaArg55 and gammaGlu93.
    Kapur A; Davies M; Dryden WF; Dunn SM
    FEBS J; 2006 Mar; 273(5):960-70. PubMed ID: 16478470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin M1 selectivity.
    Sine SM; Kreienkamp HJ; Bren N; Maeda R; Taylor P
    Neuron; 1995 Jul; 15(1):205-11. PubMed ID: 7619523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating.
    Shen XM; Ohno K; Tsujino A; Brengman JM; Gingold M; Sine SM; Engel AG
    J Clin Invest; 2003 Feb; 111(4):497-505. PubMed ID: 12588888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of d-tubocurarine binding site of Torpedo acetylcholine receptor.
    O'Leary ME; Filatov GN; White MM
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C648-53. PubMed ID: 8166227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology of ligand binding sites on the nicotinic acetylcholine receptor.
    Arias HR
    Brain Res Brain Res Rev; 1997 Oct; 25(2):133-91. PubMed ID: 9403137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutational analysis of the acetylcholine receptor channel transmitter binding site.
    Akk G; Zhou M; Auerbach A
    Biophys J; 1999 Jan; 76(1 Pt 1):207-18. PubMed ID: 9876135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 9-arginine residue of alpha-conotoxin GI is responsible for its selective high affinity for the alphagamma agonist site on the electric organ acetylcholine receptor.
    Hann RM; Pagán OR; Gregory LM; Jácome T; Eterović VA
    Biochemistry; 1997 Jul; 36(29):9051-6. PubMed ID: 9220994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct contribution of the delta subunit to acetylcholine receptor channel activation revealed by mutations of the M2 segment.
    Chen J; Auerbach A
    Biophys J; 1998 Jul; 75(1):218-25. PubMed ID: 9649381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitution of Torpedo acetylcholine receptor alpha 1-subunit residues with snake alpha 1- and rat nerve alpha 3-subunit residues in recombinant fusion proteins: effect on alpha-bungarotoxin binding.
    Chaturvedi V; Donnelly-Roberts DL; Lentz TL
    Biochemistry; 1992 Feb; 31(5):1370-5. PubMed ID: 1736994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved disulfide loop facilitates conformational maturation in the subunits of the acetylcholine receptor.
    Walcott EC; Sumikawa K
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):289-300. PubMed ID: 8883962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.
    Xie Y; Cohen JB
    J Biol Chem; 2001 Jan; 276(4):2417-26. PubMed ID: 11056174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive antagonists bridge the alpha-gamma subunit interface of the acetylcholine receptor through quaternary ammonium-aromatic interactions.
    Fu DX; Sine SM
    J Biol Chem; 1994 Oct; 269(42):26152-7. PubMed ID: 7929328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist binding to the Torpedo acetylcholine receptor. 1. Complexities revealed by dissociation kinetics.
    Dunn SM; Raftery MA
    Biochemistry; 1997 Apr; 36(13):3846-53. PubMed ID: 9092814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.