BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8662826)

  • 1. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.
    Lesuisse E; Casteras-Simon M; Labbe P
    J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae.
    Lesuisse E; Casteras-Simon M; Labbe P
    FEMS Microbiol Lett; 1997 Nov; 156(1):147-52. PubMed ID: 9368374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation.
    Doussière J; Vignais PV
    Eur J Biochem; 1992 Aug; 208(1):61-71. PubMed ID: 1324836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase.
    Shatwell KP; Dancis A; Cross AR; Klausner RD; Segal AW
    J Biol Chem; 1996 Jun; 271(24):14240-4. PubMed ID: 8662973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae.
    Amillet JM; Galiazzo F; Labbe-Bois R
    FEMS Microbiol Lett; 1996 Mar; 137(1):25-9. PubMed ID: 8935653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
    Hassett R; Kosman DJ
    J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP.
    Lesuisse E; Horion B; Labbe P; Hilger F
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):545-8. PubMed ID: 1660715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
    Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD
    J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic approach to elucidating eukaryotic iron metabolism.
    Klausner RD; Dancis A
    FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.
    Ramalho PA; Paiva S; Cavaco-Paulo A; Casal M; Cardoso MH; Ramalho MT
    Appl Environ Microbiol; 2005 Jul; 71(7):3882-8. PubMed ID: 16000801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.
    Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC
    J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.
    Dancis A; Roman DG; Anderson GJ; Hinnebusch AG; Klausner RD
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3869-73. PubMed ID: 1570306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.
    Meier B; Cross AR; Hancock JT; Kaup FJ; Jones OT
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):241-5. PubMed ID: 1850240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrireductase activity in Saccharomyces cerevisiae and other fungi: colorimetric assays on agar plates.
    Lesuisse E; Casteras-Simon M; Labbe P
    Anal Biochem; 1995 Apr; 226(2):375-7. PubMed ID: 7793641
    [No Abstract]   [Full Text] [Related]  

  • 15. Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes.
    Fedorovich D; Protchenko O; Lesuisse E
    Biometals; 1999 Dec; 12(4):295-300. PubMed ID: 10816728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase.
    O'Donnell BV; Tew DG; Jones OT; England PJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):41-9. PubMed ID: 8439298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
    Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D
    J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently.
    Eide D; Davis-Kaplan S; Jordan I; Sipe D; Kaplan J
    J Biol Chem; 1992 Oct; 267(29):20774-81. PubMed ID: 1400393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes.
    Georgatsou E; Alexandraki D
    Yeast; 1999 May; 15(7):573-84. PubMed ID: 10341420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The superoxide-generating system of human neutrophils possesses a novel diaphorase activity. Evidence for distinct regulation of electron flow within NADPH oxidase by p67-phox and p47-phox.
    Cross AR; Yarchover JL; Curnutte JT
    J Biol Chem; 1994 Aug; 269(34):21448-54. PubMed ID: 8063777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.