These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8662826)
1. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. Lesuisse E; Casteras-Simon M; Labbe P J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae. Lesuisse E; Casteras-Simon M; Labbe P FEMS Microbiol Lett; 1997 Nov; 156(1):147-52. PubMed ID: 9368374 [TBL] [Abstract][Full Text] [Related]
3. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Doussière J; Vignais PV Eur J Biochem; 1992 Aug; 208(1):61-71. PubMed ID: 1324836 [TBL] [Abstract][Full Text] [Related]
4. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. Shatwell KP; Dancis A; Cross AR; Klausner RD; Segal AW J Biol Chem; 1996 Jun; 271(24):14240-4. PubMed ID: 8662973 [TBL] [Abstract][Full Text] [Related]
5. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae. Amillet JM; Galiazzo F; Labbe-Bois R FEMS Microbiol Lett; 1996 Mar; 137(1):25-9. PubMed ID: 8935653 [TBL] [Abstract][Full Text] [Related]
6. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. Hassett R; Kosman DJ J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363 [TBL] [Abstract][Full Text] [Related]
7. The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP. Lesuisse E; Horion B; Labbe P; Hilger F Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):545-8. PubMed ID: 1660715 [TBL] [Abstract][Full Text] [Related]
8. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884 [TBL] [Abstract][Full Text] [Related]
9. A genetic approach to elucidating eukaryotic iron metabolism. Klausner RD; Dancis A FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480 [TBL] [Abstract][Full Text] [Related]
10. Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase. Ramalho PA; Paiva S; Cavaco-Paulo A; Casal M; Cardoso MH; Ramalho MT Appl Environ Microbiol; 2005 Jul; 71(7):3882-8. PubMed ID: 16000801 [TBL] [Abstract][Full Text] [Related]
11. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744 [TBL] [Abstract][Full Text] [Related]
12. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Dancis A; Roman DG; Anderson GJ; Hinnebusch AG; Klausner RD Proc Natl Acad Sci U S A; 1992 May; 89(9):3869-73. PubMed ID: 1570306 [TBL] [Abstract][Full Text] [Related]
13. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Meier B; Cross AR; Hancock JT; Kaup FJ; Jones OT Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):241-5. PubMed ID: 1850240 [TBL] [Abstract][Full Text] [Related]
14. Ferrireductase activity in Saccharomyces cerevisiae and other fungi: colorimetric assays on agar plates. Lesuisse E; Casteras-Simon M; Labbe P Anal Biochem; 1995 Apr; 226(2):375-7. PubMed ID: 7793641 [No Abstract] [Full Text] [Related]
15. Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Fedorovich D; Protchenko O; Lesuisse E Biometals; 1999 Dec; 12(4):295-300. PubMed ID: 10816728 [TBL] [Abstract][Full Text] [Related]
16. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. O'Donnell BV; Tew DG; Jones OT; England PJ Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):41-9. PubMed ID: 8439298 [TBL] [Abstract][Full Text] [Related]
17. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234 [TBL] [Abstract][Full Text] [Related]
18. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. Eide D; Davis-Kaplan S; Jordan I; Sipe D; Kaplan J J Biol Chem; 1992 Oct; 267(29):20774-81. PubMed ID: 1400393 [TBL] [Abstract][Full Text] [Related]
19. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Georgatsou E; Alexandraki D Yeast; 1999 May; 15(7):573-84. PubMed ID: 10341420 [TBL] [Abstract][Full Text] [Related]
20. The superoxide-generating system of human neutrophils possesses a novel diaphorase activity. Evidence for distinct regulation of electron flow within NADPH oxidase by p67-phox and p47-phox. Cross AR; Yarchover JL; Curnutte JT J Biol Chem; 1994 Aug; 269(34):21448-54. PubMed ID: 8063777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]