BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8662867)

  • 1. Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site.
    Cousin X; Bon S; Duval N; Massoulié J; Bon C
    J Biol Chem; 1996 Jun; 271(25):15099-108. PubMed ID: 8662867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase from snake venom as a model for its nerve and muscle counterpart.
    Cousin X; Bon C
    J Nat Toxins; 1999 Jun; 8(2):285-94. PubMed ID: 10410339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization.
    Frobert Y; Créminon C; Cousin X; Rémy MH; Chatel JM; Bon S; Bon C; Grassi J
    Biochim Biophys Acta; 1997 May; 1339(2):253-67. PubMed ID: 9187246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Acetylcholinesterase from snake venoms].
    Cousin X; Bon C
    C R Seances Soc Biol Fil; 1997; 191(3):381-400. PubMed ID: 9295965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle.
    Cousin X; Bon S; Massoulié J; Bon C
    J Biol Chem; 1998 Apr; 273(16):9812-20. PubMed ID: 9545320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric control of acetylcholinesterase catalysis by fasciculin.
    Radić Z; Quinn DM; Vellom DC; Camp S; Taylor P
    J Biol Chem; 1995 Sep; 270(35):20391-9. PubMed ID: 7657613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris.
    Morel N; Massoulié J
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):121-9. PubMed ID: 9359842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms.
    Duval N; Massoulié J; Bon S
    J Cell Biol; 1992 Aug; 118(3):641-53. PubMed ID: 1639848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".
    Simon S; Le Goff A; Frobert Y; Grassi J; Massoulié J
    J Biol Chem; 1999 Sep; 274(39):27740-6. PubMed ID: 10488117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site of fasciculin interaction with acetylcholinesterase.
    Radić Z; Duran R; Vellom DC; Li Y; Cervenansky C; Taylor P
    J Biol Chem; 1994 Apr; 269(15):11233-9. PubMed ID: 8157652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S
    Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding.
    Shafferman A; Kronman C; Flashner Y; Leitner M; Grosfeld H; Ordentlich A; Gozes Y; Cohen S; Ariel N; Barak D
    J Biol Chem; 1992 Sep; 267(25):17640-8. PubMed ID: 1517212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of an immunoenzymatic tracer combining a scFv and the acetylcholinesterase of Bungarus fasciatus by genetic recombination.
    Choumet V; Cousin X; Bon C
    FEBS Lett; 1999 Jul; 455(1-2):18-22. PubMed ID: 10428463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel.
    Bourne Y; Renault L; Marchot P
    J Biol Chem; 2015 Jan; 290(3):1522-35. PubMed ID: 25411244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of 125I-fasciculin to rat brain acetylcholinesterase. The complex still binds diisopropyl fluorophosphate.
    Marchot P; Khélif A; Ji YH; Mansuelle P; Bougis PE
    J Biol Chem; 1993 Jun; 268(17):12458-67. PubMed ID: 8509385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues in Torpedo californica acetylcholinesterase necessary for processing to a glycosyl phosphatidylinositol-anchored form.
    Bucht G; Hjalmarsson K
    Biochim Biophys Acta; 1996 Feb; 1292(2):223-32. PubMed ID: 8597567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis.
    Rochu D; Georges C; Répiton J; Viguié N; Saliou B; Bon C; Masson P
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):216-26. PubMed ID: 11342047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase from Bungarus venom: a monomeric species.
    Cousin X; Créminon C; Grassi J; Méflah K; Cornu G; Saliou B; Bon S; Massoulié J; Bon C
    FEBS Lett; 1996 Jun; 387(2-3):196-200. PubMed ID: 8674549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes.
    Ashani Y; Radić Z; Tsigelny I; Vellom DC; Pickering NA; Quinn DM; Doctor BP; Taylor P
    J Biol Chem; 1995 Mar; 270(11):6370-80. PubMed ID: 7890775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.