These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Thevissen K; Terras FR; Broekaert WF Appl Environ Microbiol; 1999 Dec; 65(12):5451-8. PubMed ID: 10584003 [TBL] [Abstract][Full Text] [Related]
3. Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. De Samblanx GW; Fernandez del Carmen A; Sijtsma L; Plasman HH; Schaaper WM; Posthuma GA; Fant F; Meloen RH; Broekaert WF; van Amerongen A Pept Res; 1996; 9(6):262-8. PubMed ID: 9048418 [TBL] [Abstract][Full Text] [Related]
4. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Spelbrink RG; Dilmac N; Allen A; Smith TJ; Shah DM; Hockerman GH Plant Physiol; 2004 Aug; 135(4):2055-67. PubMed ID: 15299136 [TBL] [Abstract][Full Text] [Related]
5. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Thevissen K; Osborn RW; Acland DP; Broekaert WF Mol Plant Microbe Interact; 2000 Jan; 13(1):54-61. PubMed ID: 10656585 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of Neurospora crassa mutants resistant to antifungal plant defensins. Ferket KK; Levery SB; Park C; Cammue BP; Thevissen K Fungal Genet Biol; 2003 Nov; 40(2):176-85. PubMed ID: 14516770 [TBL] [Abstract][Full Text] [Related]
7. Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Thery T; Arendt EK Food Microbiol; 2018 Aug; 73():111-121. PubMed ID: 29526196 [TBL] [Abstract][Full Text] [Related]
8. Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. Thevissen K; Osborn RW; Acland DP; Broekaert WF J Biol Chem; 1997 Dec; 272(51):32176-81. PubMed ID: 9405418 [TBL] [Abstract][Full Text] [Related]
9. Interactions of antifungal plant defensins with fungal membrane components. Thevissen K; Ferket KK; François IE; Cammue BP Peptides; 2003 Nov; 24(11):1705-12. PubMed ID: 15019201 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II. Schmidt M; Arendt EK; Thery TLC Food Microbiol; 2019 Sep; 82():504-514. PubMed ID: 31027812 [TBL] [Abstract][Full Text] [Related]
11. Small cysteine-rich antifungal proteins from radish: their role in host defense. Terras FR; Eggermont K; Kovaleva V; Raikhel NV; Osborn RW; Kester A; Rees SB; Torrekens S; Van Leuven F; Vanderleyden J Plant Cell; 1995 May; 7(5):573-88. PubMed ID: 7780308 [TBL] [Abstract][Full Text] [Related]
12. Synthetic peptides derived from the beta2-beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. Schaaper WM; Posthuma GA; Plasman HH; Sijtsma L; Fant F; Borremans FA; Thevissen K; Broekaert WF; Meloen RH; van Amerongen A J Pept Res; 2001 May; 57(5):409-18. PubMed ID: 11350601 [TBL] [Abstract][Full Text] [Related]
13. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Lobo DS; Pereira IB; Fragel-Madeira L; Medeiros LN; Cabral LM; Faria J; Bellio M; Campos RC; Linden R; Kurtenbach E Biochemistry; 2007 Jan; 46(4):987-96. PubMed ID: 17240982 [TBL] [Abstract][Full Text] [Related]
14. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Islam KT; Velivelli SLS; Berg RH; Oakley B; Shah DM Sci Rep; 2017 Nov; 7(1):16157. PubMed ID: 29170445 [TBL] [Abstract][Full Text] [Related]
15. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. van der Weerden NL; Hancock RE; Anderson MA J Biol Chem; 2010 Nov; 285(48):37513-20. PubMed ID: 20861017 [TBL] [Abstract][Full Text] [Related]
16. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. Sagaram US; Pandurangi R; Kaur J; Smith TJ; Shah DM PLoS One; 2011 Apr; 6(4):e18550. PubMed ID: 21533249 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive Structural and Functional Characterization of a Seed γ-thionin as a Potent Bioactive Molecule Against Fungal Pathogens and Insect Pests. Khaliq B; Abdalla M; Mehmood S; Saeed A; Munawar A; Saeed MQ; Saeed Q; Ibrahim M; Ali Z; Hussain S; Eltayb WA; Betzel C; Akrem A Curr Med Chem; 2022; 29(42):6446-6462. PubMed ID: 35676855 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. Osborn RW; De Samblanx GW; Thevissen K; Goderis I; Torrekens S; Van Leuven F; Attenborough S; Rees SB; Broekaert WF FEBS Lett; 1995 Jul; 368(2):257-62. PubMed ID: 7628617 [TBL] [Abstract][Full Text] [Related]
19. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins. Islam KT; Shah DM; El-Mounadi K J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364205 [TBL] [Abstract][Full Text] [Related]
20. The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. Landon C; Pajon A; Vovelle F; Sodano P J Pept Res; 2000 Oct; 56(4):231-8. PubMed ID: 11083062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]