BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8663035)

  • 21. Structure of the allosteric regulatory enzyme of purine biosynthesis.
    Smith JL; Zaluzec EJ; Wery JP; Niu L; Switzer RL; Zalkin H; Satow Y
    Science; 1994 Jun; 264(5164):1427-33. PubMed ID: 8197456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases.
    Mei BG; Zalkin H
    J Bacteriol; 1990 Jun; 172(6):3512-4. PubMed ID: 2188964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C; Jensen KF
    Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity.
    Willemoës M; Mølgaard A; Johansson E; Martinussen J
    FEBS J; 2005 Feb; 272(3):856-64. PubMed ID: 15670165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase.
    Rudolph J; Stubbe J
    Biochemistry; 1995 Feb; 34(7):2241-50. PubMed ID: 7532005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5-Phosphoribosylpyrophosphate amidotransferase from soybean root nodules: kinetic and regulatory properties.
    Reynolds PH; Blevins DG; Randall DD
    Arch Biochem Biophys; 1984 Mar; 229(2):623-31. PubMed ID: 6538402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing.
    Li S; Smith JL; Zalkin H
    J Bacteriol; 1999 Mar; 181(5):1403-8. PubMed ID: 10049369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation.
    Brannigan JA; Dodson G; Duggleby HJ; Moody PC; Smith JL; Tomchick DR; Murzin AG
    Nature; 1995 Nov; 378(6555):416-9. PubMed ID: 7477383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme.
    Makaroff CA; Zalkin H; Switzer RL; Vollmer SJ
    J Biol Chem; 1983 Sep; 258(17):10586-93. PubMed ID: 6411717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locations and functional roles of conserved lysine residues in Salmonella typhimurium orotate phosphoribosyltransferase.
    Ozturk DH; Dorfman RH; Scapin G; Sacchettini JC; Grubmeyer C
    Biochemistry; 1995 Aug; 34(34):10755-63. PubMed ID: 7545005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamine phosphoribosylpyrophosphate amidotransferase-independent phosphoribosyl amine synthesis from ribose 5-phosphate and glutamine or asparagine.
    Koenigsknecht MJ; Ramos I; Downs DM
    J Biol Chem; 2007 Sep; 282(39):28379-28384. PubMed ID: 17686772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B.
    Boehlein SK; Walworth ES; Richards NG; Schuster SM
    J Biol Chem; 1997 May; 272(19):12384-92. PubMed ID: 9139684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational studies of ammonia channel function in glutamine 5'-phosphoribosylpyrophosphate amidotransferase.
    Wang XS; Roitberg AE; Richards NG
    Biochemistry; 2009 Dec; 48(51):12272-82. PubMed ID: 19921932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The glutamine hydrolysis function of human GMP synthetase. Identification of an essential active site cysteine.
    Nakamura J; Straub K; Wu J; Lou L
    J Biol Chem; 1995 Oct; 270(40):23450-5. PubMed ID: 7559506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Channeling of substrates and intermediates in enzyme-catalyzed reactions.
    Huang X; Holden HM; Raushel FM
    Annu Rev Biochem; 2001; 70():149-80. PubMed ID: 11395405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and isolation of a covalent intermediate during the glutaminase reaction of a class II amidotransferase.
    Schnizer HG; Boehlein SK; Stewart JD; Richards NG; Schuster SM
    Biochemistry; 1999 Mar; 38(12):3677-82. PubMed ID: 10090755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase.
    Miran SG; Chang SH; Raushel FM
    Biochemistry; 1991 Aug; 30(32):7901-7. PubMed ID: 1868065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assay of glutamine phosphoribosylpyrophosphate amidotransferase using [1-14C]phosphoribosylpyrophosphate.
    Boss GR; Idriss SD; Willis RC; Seegmiller JE
    Anal Biochem; 1983 Apr; 130(1):283-6. PubMed ID: 6191593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation and coupling of the glutaminase and synthase reaction of glutamate synthase is mediated by E1013 of the ferredoxin-dependent enzyme, belonging to loop 4 of the synthase domain.
    Dossena L; Curti B; Vanoni MA
    Biochemistry; 2007 Apr; 46(15):4473-85. PubMed ID: 17373776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.