BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 8663046)

  • 1. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes.
    Hirsch JR; Loo DD; Wright EM
    J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Na+/glucose cotransporters.
    Wright EM; Hirsch JR; Loo DD; Zampighi GA
    J Exp Biol; 1997 Jan; 200(Pt 2):287-93. PubMed ID: 9050236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes.
    Loo DD; Hirsch JR; Sarkar HK; Wright EM
    FEBS Lett; 1996 Sep; 392(3):250-4. PubMed ID: 8774855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes.
    Forster IC; Traebert M; Jankowski M; Stange G; Biber J; Murer H
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):327-40. PubMed ID: 10332085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression.
    Lee WS; Kanai Y; Wells RG; Hediger MA
    J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive water and ion transport by cotransporters.
    Loo DD; Hirayama BA; Meinild AK; Chandy G; Zeuthen T; Wright EM
    J Physiol; 1999 Jul; 518(Pt 1):195-202. PubMed ID: 10373701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
    Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY
    Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of Na(+)-dependent glucose transport during differentiation of an intestinal epithelial cell clone is regulated by protein kinase C.
    Delézay O; Baghdiguian S; Fantini J
    J Biol Chem; 1995 May; 270(21):12536-41. PubMed ID: 7759499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter.
    Veyhl M; Spangenberg J; Püschel B; Poppe R; Dekel C; Fritzsch G; Haase W; Koepsell H
    J Biol Chem; 1993 Nov; 268(33):25041-53. PubMed ID: 8227068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of the Na(+)- D-glucose cotransporter SGLT1 by protein RS1 (RSC1A1) is dependent on dynamin and protein kinase C.
    Veyhl M; Wagner CA; Gorboulev V; Schmitt BM; Lang F; Koepsell H
    J Membr Biol; 2003 Nov; 196(1):71-81. PubMed ID: 14724758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional studies of a chimeric protein containing portions of the Na(+)/glucose and Na(+)/myo-inositol cotransporters.
    Coady MJ; Jalal F; Bissonnette P; Cartier M; Wallendorff B; Lemay G; Lapointe J
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):139-50. PubMed ID: 10825438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes.
    Mackenzie B; Loo DD; Wright EM
    J Membr Biol; 1998 Mar; 162(2):101-6. PubMed ID: 9538503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR; Lencer WI; Carlson S; Madara JL
    J Biol Chem; 1996 Mar; 271(13):7738-44. PubMed ID: 8631815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human Na+-glucose cotransporter is a molecular water pump.
    Meinild A; Klaerke DA; Loo DD; Wright EM; Zeuthen T
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):15-21. PubMed ID: 9490810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase.
    Chintalapati C; Keller T; Mueller TD; Gorboulev V; Schäfer N; Zilkowski I; Veyhl-Wichmann M; Geiger D; Groll J; Koepsell H
    Mol Pharmacol; 2016 Nov; 90(5):508-521. PubMed ID: 27555600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1).
    Hirayama BA; Loo DD; Wright EM
    J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotransport of water by the Na+/glucose cotransporter.
    Loo DD; Zeuthen T; Chandy G; Wright EM
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13367-70. PubMed ID: 8917597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Wright EM
    J Physiol; 2001 Sep; 535(Pt 2):419-25. PubMed ID: 11533134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1.
    Veyhl M; Keller T; Gorboulev V; Vernaleken A; Koepsell H
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1213-23. PubMed ID: 16788146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454.
    Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA
    Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.