These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8663109)
41. Mechanism of action of Escherichia coli phosphoribosylaminoimidazolesuccinocarboxamide synthetase. Nelson SW; Binkowski DJ; Honzatko RB; Fromm HJ Biochemistry; 2005 Jan; 44(2):766-74. PubMed ID: 15641804 [TBL] [Abstract][Full Text] [Related]
42. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Tebbe J; Bzowska A; Wielgus-Kutrowska B; Schröder W; Kazimierczuk Z; Shugar D; Saenger W; Koellner G J Mol Biol; 1999 Dec; 294(5):1239-55. PubMed ID: 10600382 [TBL] [Abstract][Full Text] [Related]
43. Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases. Iancu CV; Zhou Y; Borza T; Fromm HJ; Honzatko RB Biochemistry; 2006 Sep; 45(38):11703-11. PubMed ID: 16981730 [TBL] [Abstract][Full Text] [Related]
44. Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis. Dong Q; Liu F; Myers AM; Fromm HJ J Biol Chem; 1991 Jul; 266(19):12228-33. PubMed ID: 2061308 [TBL] [Abstract][Full Text] [Related]
45. Residues essential for catalysis and stability of the active site of Escherichia coli adenylosuccinate synthetase as revealed by directed mutation and kinetics. Kang C; Sun N; Poland BW; Gorrell A; Honzatko RB; Fromm HJ J Biol Chem; 1997 May; 272(18):11881-5. PubMed ID: 9115248 [TBL] [Abstract][Full Text] [Related]
46. Solution structure and mechanism of the MutT pyrophosphohydrolase. Mildvan AS; Weber DJ; Abeygunawardana C Adv Enzymol Relat Areas Mol Biol; 1999; 73():183-207. PubMed ID: 10218109 [TBL] [Abstract][Full Text] [Related]
48. The pursuit of new alternative ways to eradicate Helicobacter pylori continues: Detailed characterization of interactions in the adenylosuccinate synthetase active site. Bubić A; Narczyk M; Petek A; Wojtyś MI; Maksymiuk W; Wielgus-Kutrowska B; Winiewska-Szajewska M; Pavkov-Keller T; Bertoša B; Štefanić Z; Luić M; Bzowska A; Leščić Ašler I Int J Biol Macromol; 2023 Jan; 226():37-50. PubMed ID: 36470440 [TBL] [Abstract][Full Text] [Related]
49. Three-dimensional structure of a mutant ribonuclease T1 (Y45W) complexed with non-cognizable ribonucleotide, 2'AMP, and its comparison with a specific complex with 2'GMP. Hakoshima T; Itoh T; Tomita K; Goda K; Nishikawa S; Morioka H; Uesugi S; Ohtsuka E; Ikehara M J Mol Biol; 1992 Feb; 223(4):1013-28. PubMed ID: 1311385 [TBL] [Abstract][Full Text] [Related]
50. Physiological correlation between nucleoside-diphosphate kinases and the 21-kDa guanine-nucleotide binding proteins copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells. Ohtsuki K; Yokoyama M; Uesaka H Biochim Biophys Acta; 1987 Jul; 929(3):231-8. PubMed ID: 3038193 [TBL] [Abstract][Full Text] [Related]
51. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Pai EF; Kabsch W; Krengel U; Holmes KC; John J; Wittinghofer A Nature; 1989 Sep; 341(6239):209-14. PubMed ID: 2476675 [TBL] [Abstract][Full Text] [Related]
52. Binding of guanine nucleotides and Mg2+ to tubulin with a nucleotide-depleted exchangeable site. Mejillano MR; Himes RH Arch Biochem Biophys; 1991 Dec; 291(2):356-62. PubMed ID: 1952949 [TBL] [Abstract][Full Text] [Related]
54. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. Tong LA; de Vos AM; Milburn MV; Kim SH J Mol Biol; 1991 Feb; 217(3):503-16. PubMed ID: 1899707 [TBL] [Abstract][Full Text] [Related]
55. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Jagath JR; Rodnina MV; Lentzen G; Wintermeyer W Biochemistry; 1998 Nov; 37(44):15408-13. PubMed ID: 9799502 [TBL] [Abstract][Full Text] [Related]
56. An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism. Shimizu T; Ihara K; Maesaki R; Kuroda S; Kaibuchi K; Hakoshima T J Biol Chem; 2000 Jun; 275(24):18311-7. PubMed ID: 10748207 [TBL] [Abstract][Full Text] [Related]
57. Studies on active site mutants of P. falciparum adenylosuccinate synthetase: insights into enzyme catalysis and activation. Mehrotra S; Mylarappa BN; Iyengar P; Balaram H Biochim Biophys Acta; 2010 Oct; 1804(10):1996-2002. PubMed ID: 20654742 [TBL] [Abstract][Full Text] [Related]
58. Refined structure of elongation factor EF-Tu from Escherichia coli. Kjeldgaard M; Nyborg J J Mol Biol; 1992 Feb; 223(3):721-42. PubMed ID: 1542116 [TBL] [Abstract][Full Text] [Related]
59. Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. John J; Rensland H; Schlichting I; Vetter I; Borasio GD; Goody RS; Wittinghofer A J Biol Chem; 1993 Jan; 268(2):923-9. PubMed ID: 8419371 [TBL] [Abstract][Full Text] [Related]
60. Convergent evolution of nitrogen-adding enzymes in the purine nucleotide biosynthetic pathway, based on structural analysis of adenylosuccinate synthetase (PurA). Sampei GI; Ishii H; Taka H; Kawai G J Gen Appl Microbiol; 2023 Nov; 69(2):109-116. PubMed ID: 37302828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]