These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8663187)

  • 1. Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide.
    Mendoza JA; Campo GD
    J Biol Chem; 1996 Jul; 271(27):16344-9. PubMed ID: 8663187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-induced conformational changes in the apical domain of the chaperonin GroEL.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1996 Jan; 271(1):238-43. PubMed ID: 8550566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
    Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M
    Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
    Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains.
    Szpikowska BK; Swiderek KM; Sherman MA; Mas MT
    Protein Sci; 1998 Jul; 7(7):1524-30. PubMed ID: 9684884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding.
    Hlodan R; Tempst P; Hartl FU
    Nat Struct Biol; 1995 Jul; 2(7):587-95. PubMed ID: 7664127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation.
    Melkani GC; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2002 Jun; 294(4):893-9. PubMed ID: 12061791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein folding in the central cavity of the GroEL-GroES chaperonin complex.
    Mayhew M; da Silva AC; Martin J; Erdjument-Bromage H; Tempst P; Hartl FU
    Nature; 1996 Feb; 379(6564):420-6. PubMed ID: 8559246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation.
    Landry SJ; Gierasch LM
    Biochemistry; 1991 Jul; 30(30):7359-62. PubMed ID: 1677268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidized GroEL can function as a chaperonin.
    Melkani GC; Zardeneta G; Mendoza JA
    Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S.
    Boisvert DC; Wang J; Otwinowski Z; Horwich AL; Sigler PB
    Nat Struct Biol; 1996 Feb; 3(2):170-7. PubMed ID: 8564544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP.
    Makino Y; Taguchi H; Yoshida M
    FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide and Mg2+ induced conformational changes in GroEL can be detected by sulfhydryl labeling.
    Jai EA; Horowitz PM
    J Protein Chem; 1999 Apr; 18(3):387-96. PubMed ID: 10395457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative effects of potassium, magnesium, and magnesium-ADP on the release of Escherichia coli dihydrofolate reductase from the chaperonin GroEL.
    Clark AC; Karon BS; Frieden C
    Protein Sci; 1999 Oct; 8(10):2166-76. PubMed ID: 10548063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditions of forming protein complexes with GroEL can influence the mechanism of chaperonin-assisted refolding.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1997 Jan; 272(1):32-5. PubMed ID: 8995221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.