These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8663187)

  • 21. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the inter-ring communication in GroEL structural and functional asymmetry.
    Llorca O; Pérez-Pérez J; Carrascosa JL; Galán A; Muga A; Valpuesta JM
    J Biol Chem; 1997 Dec; 272(52):32925-32. PubMed ID: 9407071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures.
    Mendoza JA; Warren T; Dulin P
    Biochem Biophys Res Commun; 1996 Dec; 229(1):271-4. PubMed ID: 8954117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein.
    Smith KE; Voziyan PA; Fisher MT
    J Biol Chem; 1998 Oct; 273(44):28677-81. PubMed ID: 9786862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL.
    Lin Z; Eisenstein E
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1977-81. PubMed ID: 8700870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding.
    Martin J
    Biochemistry; 2002 Apr; 41(15):5050-5. PubMed ID: 11939802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
    Chaudhuri TK; Gupta P
    Cell Stress Chaperones; 2005; 10(1):24-36. PubMed ID: 15832945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL.
    Farr GW; Furtak K; Rowland MB; Ranson NA; Saibil HR; Kirchhausen T; Horwich AL
    Cell; 2000 Mar; 100(5):561-73. PubMed ID: 10721993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
    Miyazaki T; Yoshimi T; Furutsu Y; Hongo K; Mizobata T; Kanemori M; Kawata Y
    J Biol Chem; 2002 Dec; 277(52):50621-8. PubMed ID: 12377767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
    Koculi E; Horst R; Horwich AL; Wüthrich K
    Protein Sci; 2011 Aug; 20(8):1380-6. PubMed ID: 21633984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of oxidized chaperonin GroEL with an unfolded protein at low temperatures.
    Melkani GC; Sielaff R; Zardeneta G; Mendoza JA
    Biosci Rep; 2012 Jun; 32(3):299-303. PubMed ID: 22273181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.
    Zahn R; Buckle AM; Perrett S; Johnson CM; Corrales FJ; Golbik R; Fersht AR
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15024-9. PubMed ID: 8986757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the distribution of ligands within the asymmetric chaperonin complex, GroEL14.ADP7.GroES7.
    Girshovich AS; Bochkareva ES; Todd MJ; Lorimer GH
    FEBS Lett; 1995 Jun; 366(1):17-20. PubMed ID: 7789507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP.
    Motojima F; Yoshida M
    J Biol Chem; 2003 Jul; 278(29):26648-54. PubMed ID: 12736270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering.
    Thiyagarajan P; Henderson SJ; Joachimiak A
    Structure; 1996 Jan; 4(1):79-88. PubMed ID: 8805508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.