These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8663196)

  • 21. Characterization of gramicidin S synthetase aggregation substance: control of gramicidin S synthesis by its product, gramicidin S.
    Hori K; Kurotsu T
    J Biochem; 1997 Sep; 122(3):606-15. PubMed ID: 9348091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active site titration of gramicidin S synthetase 2: evidence for misactivation and editing in non-ribosomal peptide biosynthesis.
    Kittelberger R; Pavela-Vrancic M; von Döhren H
    FEBS Lett; 1999 Nov; 461(3):145-8. PubMed ID: 10567686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gramicidin S synthetase: variations in the activites of the light and heavy enzymes with growth of culture of Bacillus brevis.
    Barraclough R; Laland S
    Biochem Soc Trans; 1975; 3(4):534-6. PubMed ID: 52564
    [No Abstract]   [Full Text] [Related]  

  • 24. On the domain construction of the multienzyme gramicidin S synthetase 2. Isolation of domains activating valine and leucine.
    Skarpeid HJ; Zimmer TL; von Döhren H
    Eur J Biochem; 1990 May; 189(3):517-22. PubMed ID: 2190825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gramicidin S synthetase. Temperature dependence and thermodynamic parameters of substrate amino acid activation reactions.
    Vater J; Mallow N; Gerhardt S; Gadow A; Kleinkauf H
    Biochemistry; 1985 Apr; 24(8):2022-7. PubMed ID: 4016097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of sulfhydryl groups required for the catalytic activity of gramicidin S synthetase and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Kurotsu T; Miura S; Saito Y
    J Biochem; 1984 Sep; 96(3):701-11. PubMed ID: 6389530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arginine regulation of gramicidin S biosynthesis.
    Poirier A; Demain AL
    Antimicrob Agents Chemother; 1981 Oct; 20(4):508-14. PubMed ID: 6177283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paradoxical effect of arginine on gramicidin S formation by Bacillus brevis.
    Nimi O; Demain AL
    J Antibiot (Tokyo); 1981 Feb; 34(2):255-7. PubMed ID: 6170623
    [No Abstract]   [Full Text] [Related]  

  • 29. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases.
    Kohli RM; Trauger JW; Schwarzer D; Marahiel MA; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7099-108. PubMed ID: 11401555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen-dependent inactivation of gramicidin S synthetase in Bacillus brevis.
    Friebel TE; Demain AL
    J Bacteriol; 1977 Jun; 130(3):1010-6. PubMed ID: 68033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer of D-phenylalanine from gramicidin S synthetase 1 to gramicidin S synthetase 2 in gramicidin S synthesis.
    Hori K; Kanda M; Miura S; Yamada Y; Saito Y
    J Biochem; 1983 Jan; 93(1):177-88. PubMed ID: 6188751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on gramicidin S synthetase. Purification of the heavy enzyme obtained from some mutants of Bacillus brevis.
    Hori K; Kurotsu T; Kanda M; Miura S; Nozoe A; Saito Y
    J Biochem; 1978 Aug; 84(2):425-34. PubMed ID: 81200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of D-Phe-Pro-Val-cyclo-Orn by gramicidin S synthetase in the absence of L-leucine.
    Vater J; Schlumbohm W; Palacz Z; Salnikow J; Gadow A; Kleinkauf H
    Eur J Biochem; 1987 Mar; 163(2):297-302. PubMed ID: 3816807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.
    Challis GL; Ravel J; Townsend CA
    Chem Biol; 2000 Mar; 7(3):211-24. PubMed ID: 10712928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of linear gramicidin requires the cooperation of two independent reductases.
    Schracke N; Linne U; Mahlert C; Marahiel MA
    Biochemistry; 2005 Jun; 44(23):8507-13. PubMed ID: 15938641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of the C-domain in nonribosomal peptide synthesis.
    Bergendahl V; Linne U; Marahiel MA
    Eur J Biochem; 2002 Jan; 269(2):620-9. PubMed ID: 11856321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases.
    Stachelhaus T; Hüser A; Marahiel MA
    Chem Biol; 1996 Nov; 3(11):913-21. PubMed ID: 8939706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA.
    Stachelhaus T; Marahiel MA
    J Biol Chem; 1995 Mar; 270(11):6163-9. PubMed ID: 7534306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three conserved glycine residues in valine activation of gramicidin S synthetase 2 from Bacillus brevis.
    Saito M; Hori K; Kurotsu T; Kanda M; Saito Y
    J Biochem; 1995 Feb; 117(2):276-82. PubMed ID: 7608112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin.
    Schoenafinger G; Schracke N; Linne U; Marahiel MA
    J Am Chem Soc; 2006 Jun; 128(23):7406-7. PubMed ID: 16756271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.