These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 8663354)
1. Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase. Sato K; Mori H; Yoshida M; Mizushima S J Biol Chem; 1996 Jul; 271(29):17439-44. PubMed ID: 8663354 [TBL] [Abstract][Full Text] [Related]
2. Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. van der Wolk JP; Klose M; de Wit JG; den Blaauwen T; Freudl R; Driessen AJ J Biol Chem; 1995 Aug; 270(32):18975-82. PubMed ID: 7642557 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. van der Wolk J; Klose M; Breukink E; Demel RA; de Kruijff B; Freudl R; Driessen AJ Mol Microbiol; 1993 Apr; 8(1):31-42. PubMed ID: 8497195 [TBL] [Abstract][Full Text] [Related]
4. Role of a conserved glutamate residue in the Escherichia coli SecA ATPase mechanism. Zito CR; Antony E; Hunt JF; Oliver DB; Hingorani MM J Biol Chem; 2005 Apr; 280(15):14611-9. PubMed ID: 15710614 [TBL] [Abstract][Full Text] [Related]
5. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. Klose M; Schimz KL; van der Wolk J; Driessen AJ; Freudl R J Biol Chem; 1993 Feb; 268(6):4504-10. PubMed ID: 8440733 [TBL] [Abstract][Full Text] [Related]
6. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. van der Wolk JP; de Wit JG; Driessen AJ EMBO J; 1997 Dec; 16(24):7297-304. PubMed ID: 9405359 [TBL] [Abstract][Full Text] [Related]
7. Integration of SecA protein into the Escherichia coli inner membrane is regulated by its amino-terminal ATP-binding domain. Rajapandi T; Oliver D Mol Microbiol; 1996 Apr; 20(1):43-51. PubMed ID: 8861203 [TBL] [Abstract][Full Text] [Related]
8. Amino-terminal region of SecA is involved in the function of SecG for protein translocation into Escherichia coli membrane vesicles. Mori H; Sugiyama H; Yamanaka M; Sato K; Tagaya M; Mizushima S J Biochem; 1998 Jul; 124(1):122-9. PubMed ID: 9644254 [TBL] [Abstract][Full Text] [Related]
9. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mitchell C; Oliver D Mol Microbiol; 1993 Nov; 10(3):483-97. PubMed ID: 7968527 [TBL] [Abstract][Full Text] [Related]
10. Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding. Ramamurthy V; Oliver D J Biol Chem; 1997 Sep; 272(37):23239-46. PubMed ID: 9287332 [TBL] [Abstract][Full Text] [Related]
11. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Karamanou S; Vrontou E; Sianidis G; Baud C; Roos T; Kuhn A; Politou AS; Economou A Mol Microbiol; 1999 Dec; 34(5):1133-45. PubMed ID: 10594836 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. Schmidt M; Ding H; Ramamurthy V; Mukerji I; Oliver D J Biol Chem; 2000 May; 275(20):15440-8. PubMed ID: 10747939 [TBL] [Abstract][Full Text] [Related]
13. Distinct membrane binding properties of N- and C-terminal domains of Escherichia coli SecA ATPase. Dapic V; Oliver D J Biol Chem; 2000 Aug; 275(32):25000-7. PubMed ID: 10835419 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization of the SecA protein of Streptomyces lividans--interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein. Blanco J; Driessen AJ; Coque JJ; Martin JF Eur J Biochem; 1998 Oct; 257(2):472-8. PubMed ID: 9826195 [TBL] [Abstract][Full Text] [Related]
15. The conformation of SecA, as revealed by its protease sensitivity, is altered upon interaction with ATP, presecretory proteins, everted membrane vesicles, and phospholipids. Shinkai A; Mei LH; Tokuda H; Mizushima S J Biol Chem; 1991 Mar; 266(9):5827-33. PubMed ID: 1826005 [TBL] [Abstract][Full Text] [Related]
16. SecA proteins of Bacillus subtilis and Escherichia coli possess homologous amino-terminal ATP-binding domains regulating integration into the plasma membrane. McNicholas P; Rajapandi T; Oliver D J Bacteriol; 1995 Dec; 177(24):7231-7. PubMed ID: 8522532 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
18. Translocation of conjugated presecretory proteins possessing an internal non-peptide domain into everted membrane vesicles in Escherichia coli. Kato M; Mizushima S J Biol Chem; 1993 Feb; 268(5):3586-93. PubMed ID: 8429035 [TBL] [Abstract][Full Text] [Related]
19. Cloning and expression of the secA gene of a marine bacterium, Vibrio alginolyticus, and analysis of its function in Escherichia coli. Kunioka E; Matsuyama S; Tokuda H Gene; 1998 Aug; 216(2):303-9. PubMed ID: 9729436 [TBL] [Abstract][Full Text] [Related]
20. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Schiebel E; Driessen AJ; Hartl FU; Wickner W Cell; 1991 Mar; 64(5):927-39. PubMed ID: 1825804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]