These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 8663355)
41. Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles. Blitzer BL; Terzakis C; Scott KA J Biol Chem; 1986 Sep; 261(26):12042-6. PubMed ID: 3017959 [TBL] [Abstract][Full Text] [Related]
42. Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation. Balakrishnan A; Wring SA; Polli JE Pharm Res; 2006 Jul; 23(7):1451-9. PubMed ID: 16783481 [TBL] [Abstract][Full Text] [Related]
43. Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies. Ananthanarayanan M; von Dippe P; Levy D J Biol Chem; 1988 Jun; 263(17):8338-43. PubMed ID: 3372528 [TBL] [Abstract][Full Text] [Related]
44. Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Boyer JL; Ng OC; Ananthanarayanan M; Hofmann AF; Schteingart CD; Hagenbuch B; Stieger B; Meier PJ Am J Physiol; 1994 Mar; 266(3 Pt 1):G382-7. PubMed ID: 8166278 [TBL] [Abstract][Full Text] [Related]
45. Hepatocellular transport of bile acids. Evidence for distinct subcellular localizations of electrogenic and ATP-dependent taurocholate transport in rat hepatocytes. Kast C; Stieger B; Winterhalter KH; Meier PJ J Biol Chem; 1994 Feb; 269(7):5179-86. PubMed ID: 8106499 [TBL] [Abstract][Full Text] [Related]
46. Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin. Kuhn WF; Gewirtz DA Am J Physiol; 1988 May; 254(5 Pt 1):G732-40. PubMed ID: 3364571 [TBL] [Abstract][Full Text] [Related]
47. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Benedetti A; Di Sario A; Marucci L; Svegliati-Baroni G; Schteingart CD; Ton-Nu HT; Hofmann AF Am J Physiol; 1997 Jun; 272(6 Pt 1):G1416-24. PubMed ID: 9227477 [TBL] [Abstract][Full Text] [Related]
48. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver. Simion FA; Fleischer B; Fleischer S J Biol Chem; 1984 Sep; 259(17):10814-22. PubMed ID: 6469982 [TBL] [Abstract][Full Text] [Related]
49. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. Gerloff T; Stieger B; Hagenbuch B; Madon J; Landmann L; Roth J; Hofmann AF; Meier PJ J Biol Chem; 1998 Apr; 273(16):10046-50. PubMed ID: 9545351 [TBL] [Abstract][Full Text] [Related]
50. Azidobenzamido-008, a new photosensitive substrate for the 'multispecific bile acid transporter' of hepatocytes: evidence for a common transport system for bile acids and cyclosomatostatins in basolateral membranes. Ziegler K; Frimmer M; Kessler H; Haupt A Biochim Biophys Acta; 1988 Nov; 945(2):263-72. PubMed ID: 2903768 [TBL] [Abstract][Full Text] [Related]
51. Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat. Pries JM; Gustafson A; Wiegand D; Duane WC J Lipid Res; 1983 Feb; 24(2):141-6. PubMed ID: 6833891 [TBL] [Abstract][Full Text] [Related]
52. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Mita S; Suzuki H; Akita H; Hayashi H; Onuki R; Hofmann AF; Sugiyama Y Drug Metab Dispos; 2006 Sep; 34(9):1575-81. PubMed ID: 16760228 [TBL] [Abstract][Full Text] [Related]
54. Regulation of renal tubular bile acid transport in the early phase of an obstructive cholestasis in the rat. Schlattjan JH; Winter C; Greven J Nephron Physiol; 2003; 95(3):p49-56. PubMed ID: 14646358 [TBL] [Abstract][Full Text] [Related]
55. Membrane topology and cell surface targeting of microsomal epoxide hydrolase. Evidence for multiple topological orientations. Zhu Q; von Dippe P; Xing W; Levy D J Biol Chem; 1999 Sep; 274(39):27898-904. PubMed ID: 10488137 [TBL] [Abstract][Full Text] [Related]
56. Identification and characterization of a basolateral dicarboxylate/cholate antiport system in rat hepatocytes. Boelsterli UA; Zimmerli B; Meier PJ Am J Physiol; 1995 May; 268(5 Pt 1):G797-805. PubMed ID: 7762664 [TBL] [Abstract][Full Text] [Related]
57. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Zelcer N; Saeki T; Bot I; Kuil A; Borst P Biochem J; 2003 Jan; 369(Pt 1):23-30. PubMed ID: 12220224 [TBL] [Abstract][Full Text] [Related]
58. Alterations of bile acid and bumetanide uptake during culturing of rat hepatocytes. Föllmann W; Petzinger E; Kinne RK Am J Physiol; 1990 Apr; 258(4 Pt 1):C700-12. PubMed ID: 1692184 [TBL] [Abstract][Full Text] [Related]
59. S-adenosylmethionine and cAMP confer differential cytoprotection against bile acid-induced apoptosis in canine renal tubular cells and primary rat hepatocytes. Webster CR; Boria P; Usechak P; Anwer MS Vet Ther; 2002; 3(4):474-84. PubMed ID: 12584685 [TBL] [Abstract][Full Text] [Related]
60. Properties of the canalicular bile acid transport system in rat liver. Meier PJ; Meier-Abt AS; Boyer JL Biochem J; 1987 Mar; 242(2):465-9. PubMed ID: 3593261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]