These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8663383)
1. Site-directed mutagenesis of glycine 99 to alanine in L-lactate monooxygenase from Mycobacterium smegmatis. Sun W; Williams CH; Massey V J Biol Chem; 1996 Jul; 271(29):17226-33. PubMed ID: 8663383 [TBL] [Abstract][Full Text] [Related]
2. The role of glycine 99 in L-lactate monooxygenase from Mycobacterium smegmatis. Sun W; Williams CH; Massey V J Biol Chem; 1997 Oct; 272(43):27065-76. PubMed ID: 9341146 [TBL] [Abstract][Full Text] [Related]
3. Lactate monooxygenase. I. Expression of the mycobacterial gene in Escherichia coli and site-directed mutagenesis of lysine 266. Müh U; Massey V; Williams CH J Biol Chem; 1994 Mar; 269(11):7982-8. PubMed ID: 8132518 [TBL] [Abstract][Full Text] [Related]
4. Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis. Kean KM; Karplus PA Protein Sci; 2019 Jan; 28(1):135-149. PubMed ID: 30207005 [TBL] [Abstract][Full Text] [Related]
5. Lactate monooxygenase. III. Additive contributions of active site residues to catalytic efficiency and stabilization of an anionic transition state. Müh U; Williams CH; Massey V J Biol Chem; 1994 Mar; 269(11):7994-8000. PubMed ID: 8132520 [TBL] [Abstract][Full Text] [Related]
6. The roles of two amino acid residues in the active site of L-lactate monooxygenase. Mutation of arginine 187 to methionine and histidine 240 to glutamine. Sanders SA; Williams CH; Massey V J Biol Chem; 1999 Aug; 274(32):22289-95. PubMed ID: 10428797 [TBL] [Abstract][Full Text] [Related]
7. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants. Stoisser T; Klimacek M; Wilson DK; Nidetzky B FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739 [TBL] [Abstract][Full Text] [Related]
8. Lactate monooxygenase. II. Site-directed mutagenesis of the postulated active site base histidine 290. Müh U; Williams CH; Massey V J Biol Chem; 1994 Mar; 269(11):7989-93. PubMed ID: 8132519 [TBL] [Abstract][Full Text] [Related]
9. Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine. Yorita K; Aki K; Ohkuma-Soyejima T; Kokubo T; Misaki H; Massey V J Biol Chem; 1996 Nov; 271(45):28300-5. PubMed ID: 8910450 [TBL] [Abstract][Full Text] [Related]
10. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme. Maeda-Yorita K; Aki K; Sagai H; Misaki H; Massey V Biochimie; 1995; 77(7-8):631-42. PubMed ID: 8589073 [TBL] [Abstract][Full Text] [Related]
11. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase. Delle Fratte S; Iurescia S; Angelaccio S; Bossa F; Schirch V Eur J Biochem; 1994 Oct; 225(1):395-401. PubMed ID: 7925461 [TBL] [Abstract][Full Text] [Related]
12. Identification of Tyr413 as an active site residue in the flavoprotein tryptophan 2-monooxygenase and analysis of its contribution to catalysis. Sobrado P; Fitzpatrick PF Biochemistry; 2003 Dec; 42(47):13833-8. PubMed ID: 14636050 [TBL] [Abstract][Full Text] [Related]
13. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN. Yorita K; Matsuoka T; Misaki H; Massey V Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532 [TBL] [Abstract][Full Text] [Related]
14. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors. Stoisser T; Rainer D; Leitgeb S; Wilson DK; Nidetzky B FEBS J; 2015 Feb; 282(3):562-78. PubMed ID: 25423902 [TBL] [Abstract][Full Text] [Related]
15. L-lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence, and primary structure homology within an enzyme family. Giegel DA; Williams CH; Massey V J Biol Chem; 1990 Apr; 265(12):6626-32. PubMed ID: 2324094 [TBL] [Abstract][Full Text] [Related]
16. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Luanloet T; Sucharitakul J; Chaiyen P FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation. Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family. Sobrado P; Fitzpatrick PF Biochemistry; 2003 Dec; 42(47):13826-32. PubMed ID: 14636049 [TBL] [Abstract][Full Text] [Related]
19. Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue. Averill BA; Schonbrunn A; Abeles RH J Biol Chem; 1975 Feb; 250(4):1603-5. PubMed ID: 234460 [TBL] [Abstract][Full Text] [Related]
20. Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase). Mowat CG; Beaudoin I; Durley RC; Barton JD; Pike AD; Chen ZW; Reid GA; Chapman SK; Mathews FS; Lederer F Biochemistry; 2000 Mar; 39(12):3266-75. PubMed ID: 10727218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]