These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8664108)

  • 1. A fast method for in vivo lactate imaging.
    Reese T; Norris DG; Leibfritz D
    NMR Biomed; 1995 Aug; 8(5):225-31. PubMed ID: 8664108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate distribution in ischemic rat kidney by 4D spectroscopic imaging.
    Lazeyras F; Aue WP
    NMR Biomed; 1989 Dec; 2(5-6):230-3. PubMed ID: 2641897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly sensitive lactate editing technique for surface coil spectroscopic imaging in vivo.
    Bourgeois D; Kozlowski P
    Magn Reson Med; 1993 Mar; 29(3):402-6. PubMed ID: 8383790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective saturation NMR imaging.
    Rosen BR; Wedeen VJ; Brady TJ
    J Comput Assist Tomogr; 1984 Oct; 8(5):813-8. PubMed ID: 6470246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative estimation of lactate in the brain by 1H NMR.
    Williams SR; Proctor E; Allen K; Gadian DG; Crockard HA
    Magn Reson Med; 1988 Aug; 7(4):425-31. PubMed ID: 3173057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated volume-selective/spectral editing 1H NMR and postdetection signal processing for the sensitive determination of lactate.
    Knüttel A; Rommel E; Clausen M; Kimmich R
    Magn Reson Med; 1988 Sep; 8(1):70-9. PubMed ID: 3173070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D 1H spectroscopic imaging of the human brain at 4.1 T.
    Hetherington HP; Pan JW; Mason GF; Ponder SL; Twieg DB; Deutsch G; Mountz J; Pohost GM
    Magn Reson Med; 1994 Oct; 32(4):530-4. PubMed ID: 7997121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating lactate/lipid discrimination into a spectroscopic imaging sequence.
    Adalsteinsson E; Spielman DM; Wright GA; Pauly JM; Meyer CH; Macovski A
    Magn Reson Med; 1993 Jul; 30(1):124-30. PubMed ID: 8371666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate quantitation in a gerbil brain stroke model by GSLIM of multiple-quantum-filtered signals. Generalized spectral localization by imaging.
    Kmiecik JA; Gregory CD; Liang ZP; Lauterbur PC; Dawson MJ
    J Magn Reson Imaging; 1999 Apr; 9(4):539-43. PubMed ID: 10232511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of lactate measurement in multi-spin-echo proton spectroscopic imaging.
    Duyn JH; Frank JA; Moonen CT
    Magn Reson Med; 1995 Jan; 33(1):101-7. PubMed ID: 7891522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for lipid suppression in lactate imaging using STIR-DQCT: a study of hypoxic-ischemic brain injury.
    Nakai T; Rhine WD; Okada T; Stevenson DK; Spielman DM
    Magn Reson Med; 1998 Oct; 40(4):629-32. PubMed ID: 9771580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate discrimination incorporated into echo-planar spectroscopic imaging.
    Bito Y; Ebisu T; Hirata S; Takegami T; Yamamoto Y; Tanaka C; Naruse S
    Magn Reson Med; 2001 Apr; 45(4):568-74. PubMed ID: 11283983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1H homonuclear editing of rat brain using semiselective pulses.
    Hetherington HP; Avison MJ; Shulman RG
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3115-8. PubMed ID: 2987910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-shot lactate-editing sequence for localized whole-body spectroscopy.
    McKinnon GC; Boesiger P
    Magn Reson Med; 1988 Nov; 8(3):355-61. PubMed ID: 2849705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia.
    Crockard HA; Gadian DG; Frackowiak RS; Proctor E; Allen K; Williams SR; Russell RW
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of lactate in acutely ischemic rat kidneys using magnetic resonance spectroscopy.
    Lazeyras F; Terrier F; Aue WP; Frey FJ; Howarth N
    Invest Radiol; 1994 Jan; 29(1):24-30. PubMed ID: 8144333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unequivocal determination of lactic acid using a one-dimensional zero-quantum coherence-transfer technique.
    Doddrell DM; Brereton IM; Moxon LN; Galloway GJ
    Magn Reson Med; 1989 Jan; 9(1):132-8. PubMed ID: 2709991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D J-resolved spiral spectroscopic imaging at 7 T: application to mobile lipid mapping in a rat glioma.
    Hiba B; Serduc R; Provent P; Farion R; Rémy C; Ziegler A
    Magn Reson Med; 2004 Sep; 52(3):658-62. PubMed ID: 15334587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral editing with adiabatic pulses.
    de Graaf RA; Luo Y; Terpstra M; Garwood M
    J Magn Reson B; 1995 Nov; 109(2):184-93. PubMed ID: 7582600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-scan in vivo lactate editing with complete lipid and water suppression by selective multiple-quantum-coherence transfer (Sel-MQC) with application to tumors.
    He Q; Shungu DC; van Zijl PC; Bhujwalla ZM; Glickson JD
    J Magn Reson B; 1995 Mar; 106(3):203-11. PubMed ID: 7719620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.