BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8664279)

  • 21. Degradation of yeast cytochromes c dependent and independent on its physiological partners.
    Pearce DA; Sherman F
    Arch Biochem Biophys; 1998 Apr; 352(1):85-96. PubMed ID: 9521820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c.
    Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E
    Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity.
    Rafferty SP; Guillemette JG; Berghuis AM; Smith M; Brayer GD; Mauk AG
    Biochemistry; 1996 Aug; 35(33):10784-92. PubMed ID: 8718869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanism of electron transfer between myoglobin derivatives and ferricytochrome C].
    Postnikova GB
    Biofizika; 1986; 31(1):163-75. PubMed ID: 3006793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic absorption spectra and redox properties of C type cytochromes in living microbes.
    Nakamura R; Ishii K; Hashimoto K
    Angew Chem Int Ed Engl; 2009; 48(9):1606-8. PubMed ID: 19156795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum.
    Kerfeld CA; Chan C; Hirasawa M; Kleis-SanFrancisco S; Yeates TO; Knaff DB
    Biochemistry; 1996 Jun; 35(24):7812-8. PubMed ID: 8672482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of reversed electron transfer and proton transport in the beef heart cytochrome bc1 complex by chemical modification.
    Miki T; Umeda M; Harada Y
    J Biochem; 2007 Mar; 141(3):377-87. PubMed ID: 17234684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction coordinates for electron transfer reactions.
    Rasaiah JC; Zhu J
    J Chem Phys; 2008 Dec; 129(21):214503. PubMed ID: 19063565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determinants of electron transfer rates: the cytochrome c: cytochrome c peroxidase system.
    McLendon G; Rogalsky JS; Magner E; Conklin KT
    Prog Clin Biol Res; 1988; 274():387-400. PubMed ID: 2841674
    [No Abstract]   [Full Text] [Related]  

  • 30. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.
    Krapf S; Koslowski T; Steinbrecher T
    Phys Chem Chem Phys; 2010 Aug; 12(32):9516-25. PubMed ID: 20532362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transfer between cytochrome c and metal hexacyanide complexes. Effect of thermodynamic driving force on the electron transfer rate.
    Cho KC; Chu WF; Choy CL; Che CM
    Biochim Biophys Acta; 1989 Jan; 973(1):53-8. PubMed ID: 2536552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of immobilization on the conformational dynamics and reactivity of cytochrome C in oxidative-reductive transformations].
    Davydov RM; Vesterman BG; Genkin MV; Bliumenfel'd LA; Krylov OV
    Dokl Akad Nauk SSSR; 1981; 256(2):491-4. PubMed ID: 6260447
    [No Abstract]   [Full Text] [Related]  

  • 34. Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551).
    Wilson MT; Silvestrini MC; Morpurgo L; Brunori M
    J Inorg Biochem; 1979 Oct; 11(2):95-100. PubMed ID: 228006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Differentiation between 2 cytochrome-a-components, 3 cytochrome-b-components and hemoglobin in yeast cells].
    Kuschmitz D; Hess B
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1543. PubMed ID: 4346465
    [No Abstract]   [Full Text] [Related]  

  • 36. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.
    Quintas PO; Cepeda AP; Borges N; Catarino T; Turner DL
    Biochim Biophys Acta; 2013 Jun; 1827(6):745-50. PubMed ID: 23428398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. c-Type cytochromes: oxidation-reduction properties.
    Cusanovich MA; Meyer TE; Tollin G
    Adv Inorg Biochem; 1988; 7():37-91. PubMed ID: 2821745
    [No Abstract]   [Full Text] [Related]  

  • 38. Redox properties of cytochrome c: novel linear response and hybrid continuum-microscopic methodologies.
    Simonson T
    Pac Symp Biocomput; 1997; ():421-31. PubMed ID: 9390311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox reactivity and reorganization energy of zinc cytochrome c cation radical.
    Crnogorac MM; Kostić NM
    Inorg Chem; 2000 Oct; 39(22):5028-35. PubMed ID: 11233199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The lag phase of Saccharomyces cerevisiae growth following dehydration].
    Beker ME; Damberga BE; Upit AA; Blumberg IaE; Krauze IIa
    Mikrobiologiia; 1974; 43(6):1028-33. PubMed ID: 4141477
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.