These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 8664287)
1. Relationships between bilayer structure and phospholipase A2 activity: interactions among temperature, diacylglycerol, lysolecithin, palmitic acid, and dipalmitoylphosphatidylcholine. Bell JD; Burnside M; Owen JA; Royall ML; Baker ML Biochemistry; 1996 Apr; 35(15):4945-55. PubMed ID: 8664287 [TBL] [Abstract][Full Text] [Related]
2. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Henshaw JB; Olsen CA; Farnbach AR; Nielson KH; Bell JD Biochemistry; 1998 Jul; 37(30):10709-21. PubMed ID: 9692961 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature and glycerides on the enhancement of Agkistrodon piscivorus piscivorus phospholipase A2 activity by lysolecithin and palmitic acid. Bell JD; Baker ML; Bent ED; Ashton RW; Hemming DJ; Hansen LD Biochemistry; 1995 Sep; 34(36):11551-60. PubMed ID: 7547886 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of Agkistrodon piscivorus piscivorus venom phospholipase A2 activity toward phosphatidylcholine vesicles by lysolecithin and palmitic acid: studies with fluorescent probes of membrane structure. Sheffield MJ; Baker BL; Li D; Owen NL; Baker ML; Bell JD Biochemistry; 1995 Jun; 34(24):7796-806. PubMed ID: 7794890 [TBL] [Abstract][Full Text] [Related]
5. Induction of a latency period in the time-course of phospholipase A2 action on dipalmitoylphosphatidylcholine liposomes in the gel phase. González-Martínez MT; Fernández MS Biochem Biophys Res Commun; 1988 Mar; 151(2):851-8. PubMed ID: 3348816 [TBL] [Abstract][Full Text] [Related]
6. Regulation by gangliosides and sulfatides of phospholipase A2 activity against dipalmitoyl- and dilauroylphosphatidylcholine in small unilamellar bilayer vesicles and mixed monolayers. Maggio B; Bianco ID; Montich GG; Fidelio GD; Yu RK Biochim Biophys Acta; 1994 Feb; 1190(1):137-48. PubMed ID: 8110807 [TBL] [Abstract][Full Text] [Related]
7. Binding of phospholipase A2 to zwitterionic bilayers is promoted by lateral segregation of anionic amphiphiles. Jain MK; Yu BZ; Kozubek A Biochim Biophys Acta; 1989 Mar; 980(1):23-32. PubMed ID: 2923895 [TBL] [Abstract][Full Text] [Related]
8. Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack. Dawson RM; Irvine RF; Bray J; Quinn PJ Biochem Biophys Res Commun; 1984 Dec; 125(2):836-42. PubMed ID: 6517928 [TBL] [Abstract][Full Text] [Related]
9. Quantification of the interaction of lysolecithin with phosphatidylcholine vesicles using bovine serum albumin: relevance to the activation of phospholipase A2. Brown SD; Baker BL; Bell JD Biochim Biophys Acta; 1993 May; 1168(1):13-22. PubMed ID: 8504138 [TBL] [Abstract][Full Text] [Related]
10. Activation of phospholipase A2 on lipid bilayers. Bell JD; Biltonen RL Methods Enzymol; 1991; 197():249-58. PubMed ID: 2051919 [TBL] [Abstract][Full Text] [Related]
11. Origin of the latency phase during the action of phospholipase A2 on unmodified phosphatidylcholine vesicles. Apitz-Castro R; Jain MK; De Haas GH Biochim Biophys Acta; 1982 Jun; 688(2):349-56. PubMed ID: 7104329 [TBL] [Abstract][Full Text] [Related]
12. Distribution of reaction products in phospholipase A2 hydrolysis. Wacklin HP; Tiberg F; Fragneto G; Thomas RK Biochim Biophys Acta; 2007 May; 1768(5):1036-49. PubMed ID: 17355873 [TBL] [Abstract][Full Text] [Related]
13. Hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles by porcine pancreatic phospholipase A2. Lichtenberg D; Romero G; Menashe M; Biltonen RL J Biol Chem; 1986 Apr; 261(12):5334-40. PubMed ID: 3754258 [TBL] [Abstract][Full Text] [Related]
14. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Grandbois M; Clausen-Schaumann H; Gaub H Biophys J; 1998 May; 74(5):2398-404. PubMed ID: 9591666 [TBL] [Abstract][Full Text] [Related]
15. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
17. The activation of porcine pancreatic phospholipase A2 by dipalmitoylphosphatidylcholine large unilamellar vesicles. Analysis of the state of aggregation of the activated enzyme. Romero G; Thompson K; Biltonen RL J Biol Chem; 1987 Oct; 262(28):13476-82. PubMed ID: 3654625 [TBL] [Abstract][Full Text] [Related]
18. Quantification of the interactions among fatty acid, lysophosphatidylcholine, calcium, dimyristoylphosphatidylcholine vesicles, and phospholipase A2. Bent ED; Bell JD Biochim Biophys Acta; 1995 Feb; 1254(3):349-60. PubMed ID: 7857976 [TBL] [Abstract][Full Text] [Related]
19. Atomic force microscope visualization of lipid bilayer degradation due to action of phospholipase A2 and Humicola lanuginosa lipase. Balashev K; John DiNardo N; Callisen TH; Svendsen A; Bjørnholm T Biochim Biophys Acta; 2007 Jan; 1768(1):90-9. PubMed ID: 17084807 [TBL] [Abstract][Full Text] [Related]
20. Action of phospholipase A2 on bilayers containing lysophosphatidylcholine analogs and the effect of inhibitors. Jain MK; Streb M; Rogers J; DeHaas GH Biochem Pharmacol; 1984 Aug; 33(16):2541-51. PubMed ID: 6466371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]