BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 866587)

  • 1. Influence of neutron collimation on the energy deposition in a tissue equivalent sphere.
    Coppola M; Bettega D; Porro F
    Radiat Environ Biophys; 1977 Apr; 14(1):83-93. PubMed ID: 866587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.
    Takada M; Baba M; Yamaguchi H; Fujitaka K
    Radiat Prot Dosimetry; 2005; 114(4):481-90. PubMed ID: 15914511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter.
    Stinchcomb TG; Kuchnir FT
    Med Phys; 1981; 8(5):688-94. PubMed ID: 6793823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of dose distributions of linear energy transfer in matter irradiated by fast neutrons.
    Schell MC; Pearson DW; DeLuca PM; Haight RC
    Med Phys; 1990; 17(1):1-9. PubMed ID: 2308539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron scattering and energy deposition spectra.
    Coppola M; Booz J
    Radiat Environ Biophys; 1975 Jun; 12(2):157-68. PubMed ID: 1178830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron generator (HIRRAC) and dosimetry study.
    Endo S; Hoshi M; Takada J; Tauchi H; Matsuura S; Takeoka S; Kitagawa K; Suga S; Komatsu K
    J Radiat Res; 1999 Dec; 40 Suppl():14-20. PubMed ID: 10804989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron energy spectra and dose-distribution spectra of cyclotron-produced neutron beams.
    Heintz PH; Johnsen SW; Peek NF
    Med Phys; 1977; 4(3):250-4. PubMed ID: 882060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.
    Waker AJ; Aslam
    Radiat Res; 2011 Jun; 175(6):806-13. PubMed ID: 21476858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COMPARISON STUDY OF VARIOUS PLASTICS AS THE WALL MATERIAL OF THGEM-BASED MICRODOSEMETERS FOR FAST NEUTRON MEASUREMENTS.
    Moslehi A; Raisali G; Lamehi M
    Radiat Prot Dosimetry; 2017 Apr; 173(4):286-292. PubMed ID: 26891790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental kerma coefficients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic, Al203, AlN, SiO2 and ZrO2 for neutron energies up to 66 MeV.
    Schrewe UJ; Newhauser WD; Brede HJ; DeLuca PM
    Phys Med Biol; 2000 Mar; 45(3):651-83. PubMed ID: 10730963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetry of low-energy neutrons using low-pressure proportional counters.
    Schuhmacher H; Alberts WG; Menzel HG; Bühler G
    Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter.
    Nunomiya T; Kim E; Kurosaw T; Taniguchi S; Nakamura T; Nakane Y; Sakamoto Y; Tanaka S
    Radiat Prot Dosimetry; 2002; 102(1):49-59. PubMed ID: 12212902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple chamber technique for thermal neutron dose measurements in fast neutron beams.
    Schmidt R; Hess A
    Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenic transformation by fractionated doses of neutrons.
    Miller RC; Brenner DJ; Geard CR; Komatsu K; Marino SA; Hall EJ
    Radiat Res; 1988 Jun; 114(3):589-98. PubMed ID: 3375445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems.
    Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM
    Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose levels due to neutrons in the vicinity of high-energy medical accelerators.
    McGinley PH; Wood M; Mills M; Rodriguez R
    Med Phys; 1976; 3(6):397-402. PubMed ID: 826776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetry of monoenergetic neutrons.
    Srdoc D; Marino SA
    Radiat Res; 1996 Oct; 146(4):466-74. PubMed ID: 8927719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE RESPONSE OF A MULTI-ELEMENT TISSUE EQUIVALENT PROPORTIONAL COUNTER IN ACCELERATOR BASED HIGH-ALTITUDE NEUTRON FIELDS.
    Orchard GM; Waker AJ
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):142-145. PubMed ID: 29036384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.