These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 8666234)
1. Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control. Patra D; Dunphy WG Genes Dev; 1996 Jun; 10(12):1503-15. PubMed ID: 8666234 [TBL] [Abstract][Full Text] [Related]
2. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase- promoting complex at mitosis. Patra D; Dunphy WG Genes Dev; 1998 Aug; 12(16):2549-59. PubMed ID: 9716407 [TBL] [Abstract][Full Text] [Related]
3. The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators. Patra D; Wang SX; Kumagai A; Dunphy WG J Biol Chem; 1999 Dec; 274(52):36839-42. PubMed ID: 10601234 [TBL] [Abstract][Full Text] [Related]
4. Cell cycle regulation of a Xenopus Wee1-like kinase. Mueller PR; Coleman TR; Dunphy WG Mol Biol Cell; 1995 Jan; 6(1):119-34. PubMed ID: 7749193 [TBL] [Abstract][Full Text] [Related]
5. Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Izumi T; Maller JL Mol Biol Cell; 1993 Dec; 4(12):1337-50. PubMed ID: 7513216 [TBL] [Abstract][Full Text] [Related]
6. p13suc1 of Schizosaccharomyces pombe regulates two distinct forms of the mitotic cdc2 kinase. Basi G; Draetta G Mol Cell Biol; 1995 Apr; 15(4):2028-36. PubMed ID: 7891698 [TBL] [Abstract][Full Text] [Related]
8. A WD repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complexes. Yamaguchi S; Murakami H; Okayama H Mol Biol Cell; 1997 Dec; 8(12):2475-86. PubMed ID: 9398669 [TBL] [Abstract][Full Text] [Related]
9. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Kumagai A; Dunphy WG Mol Biol Cell; 1995 Feb; 6(2):199-213. PubMed ID: 7787246 [TBL] [Abstract][Full Text] [Related]
10. Binding of activated cyclosome to p13(suc1). Use for affinity purification. Sudakin V; Shteinberg M; Ganoth D; Hershko J; Hershko A J Biol Chem; 1997 Jul; 272(29):18051-9. PubMed ID: 9218435 [TBL] [Abstract][Full Text] [Related]
11. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Mueller PR; Coleman TR; Kumagai A; Dunphy WG Science; 1995 Oct; 270(5233):86-90. PubMed ID: 7569953 [TBL] [Abstract][Full Text] [Related]
12. The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. Descombes P; Nigg EA EMBO J; 1998 Mar; 17(5):1328-35. PubMed ID: 9482730 [TBL] [Abstract][Full Text] [Related]
13. A phosphorylation site mutant of Schizosaccharomyces pombe cdc2p fails to promote the metaphase to anaphase transition. Gould KL; Feoktistova A; Fleig U Mol Gen Genet; 1998 Sep; 259(4):437-48. PubMed ID: 9790601 [TBL] [Abstract][Full Text] [Related]
14. Two distinct mechanisms for negative regulation of the Wee1 protein kinase. Tang Z; Coleman TR; Dunphy WG EMBO J; 1993 Sep; 12(9):3427-36. PubMed ID: 7504624 [TBL] [Abstract][Full Text] [Related]
15. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Dunphy WG; Newport JW Cell; 1989 Jul; 58(1):181-91. PubMed ID: 2473838 [TBL] [Abstract][Full Text] [Related]
16. Mutations at sites involved in Suc1 binding inactivate Cdc2. Ducommun B; Brambilla P; Draetta G Mol Cell Biol; 1991 Dec; 11(12):6177-84. PubMed ID: 1944283 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II. Hutchins JR; Dikovskaya D; Clarke PR Mol Biol Cell; 2003 Oct; 14(10):4003-14. PubMed ID: 14517314 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of Xenopus cdc2, a component of MPF. Milarski KL; Dunphy WG; Russell P; Gould SJ; Newport JW Cold Spring Harb Symp Quant Biol; 1991; 56():377-84. PubMed ID: 1840255 [No Abstract] [Full Text] [Related]
19. Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Murakami MS; Vande Woude GF Development; 1998 Jan; 125(2):237-48. PubMed ID: 9486797 [TBL] [Abstract][Full Text] [Related]
20. Activation of Wee1 by p42 MAPK in vitro and in cycling xenopus egg extracts. Walter SA; Guadagno SN; Ferrell JE Mol Biol Cell; 2000 Mar; 11(3):887-96. PubMed ID: 10712507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]