BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8667520)

  • 1. Endothelial function and adrenergic reactivity in human type-II diabetic resistance arteries.
    Cipolla MJ; Harker CT; Porter JM
    J Vasc Surg; 1996 May; 23(5):940-9. PubMed ID: 8667520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of elevated homocysteine levels on adrenergic vasoconstriction of human resistance arteries: the role of the endothelium and reactive oxygen species.
    Cipolla MJ; Williamson WK; Nehler ML; Taylor LM; Porter JM
    J Vasc Surg; 2000 Apr; 31(4):751-9. PubMed ID: 10753283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats.
    Heygate KM; Lawrence IG; Bennett MA; Thurston H
    Br J Pharmacol; 1995 Dec; 116(8):3251-9. PubMed ID: 8719804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gestation increases nitric oxide-mediated vasodilation in rat uterine arteries.
    Ni Y; Meyer M; Osol G
    Am J Obstet Gynecol; 1997 Apr; 176(4):856-64. PubMed ID: 9125611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide is involved in the inhibitory neurotransmission and endothelium-dependent relaxations of human small penile arteries.
    Simonsen U; Prieto D; Delgado JA; Hernández M; Resel L; Saenz de Tejada I; García-Sacristán A
    Clin Sci (Lond); 1997 Mar; 92(3):269-75. PubMed ID: 9093007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of insulin on endothelial and contractile function of subcutaneous small resistance arteries of hypertensive and diabetic patients.
    De Ciuceis C; Rizzoni D; Porteri E; Boari GE; Zani F; Miclini M; Tiberio GA; Giulini SM; Paiardi S; Rizzardi N; Platto C; Agabiti-Rosei E
    J Vasc Res; 2008; 45(6):512-20. PubMed ID: 18451634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation.
    Sugihara T; Hattori Y; Yamamoto Y; Qi F; Ichikawa R; Sato A; Liu MY; Abe K; Kanno M
    Circulation; 1999 Aug; 100(6):635-41. PubMed ID: 10441101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NOS inhibition potentiates norepinephrine but not sympathetic nerve-mediated co-transmission in resistance arteries.
    Smith KM; Macmillan JB; McCulloch KM; McGrath JC
    Cardiovasc Res; 1999 Aug; 43(3):762-71. PubMed ID: 10690348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-dependent relaxation and noradrenaline sensitivity in mesenteric resistance arteries of streptozotocin-induced diabetic rats.
    Taylor PD; McCarthy AL; Thomas CR; Poston L
    Br J Pharmacol; 1992 Oct; 107(2):393-9. PubMed ID: 1422588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased vascular responsiveness to alpha 2-adrenergic stimulation during NOS inhibition-induced hypertension.
    Kanagy NL
    Am J Physiol; 1997 Dec; 273(6):H2756-64. PubMed ID: 9435612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide synthase-inhibition hypertension is associated with altered endothelial cyclooxygenase function.
    Bratz IN; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2394-401. PubMed ID: 15319202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased vascular responsiveness to norepinephrine in rats with heart failure is endothelium dependent. Dissociation of basal and stimulated nitric oxide release.
    Teerlink JR; Gray GA; Clozel M; Clozel JP
    Circulation; 1994 Jan; 89(1):393-401. PubMed ID: 8281675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered vascular reactivity in mice made hypertensive by nitric oxide synthase inhibition.
    Linder AE; Weber DS; Whitesall SE; D'Alecy LG; Webb RC
    J Cardiovasc Pharmacol; 2005 Oct; 46(4):438-44. PubMed ID: 16160594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential contribution of endothelial function to vascular reactivity in conduit and resistance arteries from deoxycorticosterone-salt hypertensive rats.
    White RM; Rivera CO; Davison CB
    Hypertension; 1996 Jun; 27(6):1245-53. PubMed ID: 8641731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of vasoconstriction by endogenous nitric oxide in rat caudal artery.
    Vo PA; Reid JJ; Rand MJ
    Br J Pharmacol; 1992 Dec; 107(4):1121-8. PubMed ID: 1467834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats.
    Taylor PD; Oon BB; Thomas CR; Poston L
    Br J Pharmacol; 1994 Jan; 111(1):35-41. PubMed ID: 8012717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormonal influence on the release of endothelial nitric oxide: gender-related dimorphic sensitivity of rat aorta for noradrenaline.
    Calderone V; Baragatti B; Breschi MC; Nieri P; Martinotti E
    J Pharm Pharmacol; 2002 Apr; 54(4):523-8. PubMed ID: 11999130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compromised arterial function in human type 2 diabetic patients.
    Okon EB; Chung AW; Rauniyar P; Padilla E; Tejerina T; McManus BM; Luo H; van Breemen C
    Diabetes; 2005 Aug; 54(8):2415-23. PubMed ID: 16046309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of alpha 1- and alpha 2-adrenoceptor activation.
    Zschauer AO; Sielczak MW; Smith DA; Wanner A
    J Appl Physiol (1985); 1997 Jun; 82(6):1918-25. PubMed ID: 9173959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.