These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 8668100)

  • 1. Three-dimensional reconstruction of vascular trees. Theory and methodology.
    Henri CJ; Peters TM
    Med Phys; 1996 Feb; 23(2):197-204. PubMed ID: 8668100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional reconstruction of vascular trees: experimental evaluation.
    Henri CJ; Peters TM
    Med Phys; 1996 May; 23(5):617-27. PubMed ID: 8724732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
    Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S
    Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging.
    Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S
    Med Phys; 2006 Oct; 33(10):3901-11. PubMed ID: 17089852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular tree reconstruction with discrete tomography: intensity based camera correction for 3D reconstruction.
    Bodensteiner C; Darolti C; Schweikard A
    Int J Comput Assist Radiol Surg; 2009 Mar; 4(2):189-202. PubMed ID: 20033619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional reconstruction of blood vessels extracted from retinal fundus images.
    Martinez-Perez ME; Espinosa-Romero A
    Opt Express; 2012 May; 20(10):11451-65. PubMed ID: 22565765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation and reconstruction of vascular structures for 3D real-time simulation.
    Wu X; Luboz V; Krissian K; Cotin S; Dawson S
    Med Image Anal; 2011 Feb; 15(1):22-34. PubMed ID: 20655274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of projection geometry for few-view reconstruction of sparse objects.
    Henri CJ; Collins DL; Peters TM
    Med Phys; 1993; 20(5):1537-47. PubMed ID: 8289738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curvature-dependent surface visualization of vascular structures.
    Wu J; Ma R; Ma X; Jia F; Hu Q
    Comput Med Imaging Graph; 2010 Dec; 34(8):651-8. PubMed ID: 20732792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation and reduction of error in three-dimensional structure determined from biplane views of unknown orientation.
    Fencil LE; Metz CE
    Med Phys; 1990; 17(6):951-61. PubMed ID: 2280738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A new method for infering vessel structure based on circle detection and Gabor filter].
    Zheng QB; Li HL; Yang Y; Wu GL; Zhou SJ
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Sep; 30(9):2063-6. PubMed ID: 20855250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary vascular reconstruction from a limited number of cone beam projections.
    Robert N; Peyrin F; Yaffe MJ
    Med Phys; 1994 Dec; 21(12):1839-51. PubMed ID: 7700191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR imaging of blood vessels using three-dimensional reconstruction: methodology.
    Hale JD; Valk PE; Watts JC; Kaufman L; Crooks LE; Higgins CB; Deconinck F
    Radiology; 1985 Dec; 157(3):727-33. PubMed ID: 4059560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxel-coding.
    Soltanian-Zadeh H; Shahrokni A; Khalighi MM; Zhang ZG; Zoroofi RA; Maddah M; Chopp M
    Comput Biol Med; 2005 Nov; 35(9):791-813. PubMed ID: 16278109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis.
    Hamarneh G; Jassi P
    Comput Med Imaging Graph; 2010 Dec; 34(8):605-16. PubMed ID: 20656456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional quantitative coronary angiography.
    Saito T; Misaki M; Shirato K; Takishima T
    IEEE Trans Biomed Eng; 1990 Aug; 37(8):768-77. PubMed ID: 2210785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features.
    Levakhina YM; Müller J; Duschka RL; Vogt F; Barkhausen J; Buzug TM
    Med Phys; 2013 Mar; 40(3):031106. PubMed ID: 23464286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gray-scale skeletonization of small vessels in magnetic resonance angiography.
    Yim PJ; Choyke PL; Summers RM
    IEEE Trans Med Imaging; 2000 Jun; 19(6):568-76. PubMed ID: 11026460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle-independent measure of motion for image-based gating in 3D coronary angiography.
    Lehmann GC; Holdsworth DW; Drangova M
    Med Phys; 2006 May; 33(5):1311-20. PubMed ID: 16752566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.