These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8668191)

  • 1. Flanking sequences modulate the cell specificity of M-CAT elements.
    Larkin SB; Farrance IK; Ordahl CP
    Mol Cell Biol; 1996 Jul; 16(7):3742-55. PubMed ID: 8668191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1.
    Farrance IK; Mar JH; Ordahl CP
    J Biol Chem; 1992 Aug; 267(24):17234-40. PubMed ID: 1324927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription.
    Mar JH; Ordahl CP
    Mol Cell Biol; 1990 Aug; 10(8):4271-83. PubMed ID: 2370866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription.
    Stewart AF; Larkin SB; Farrance IK; Mar JH; Hall DE; Ordahl CP
    J Biol Chem; 1994 Feb; 269(5):3147-50. PubMed ID: 8106348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cis-regulating elements and trans-activating factors of the rat cardiac troponin T gene.
    Wang G; Yeh HI; Lin JJ
    J Biol Chem; 1994 Dec; 269(48):30595-603. PubMed ID: 7982978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac troponin T gene expression in muscle.
    Mar JH; Iannello RC; Ordahl CP
    Symp Soc Exp Biol; 1992; 46():237-49. PubMed ID: 1341039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of troponin T gene expression in chicken fast skeletal muscle: involvement of an M-CAT-like element distinct from the standard M-CAT.
    Watanabe T; Takemasa T; Yonemura I; Hirabayashi T
    J Biochem; 1997 Feb; 121(2):212-8. PubMed ID: 9089392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle.
    Parmacek MS; Ip HS; Jung F; Shen T; Martin JF; Vora AJ; Olson EN; Leiden JM
    Mol Cell Biol; 1994 Mar; 14(3):1870-85. PubMed ID: 8114720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cDNA cloning and characterization of murine transcriptional enhancer factor-1-related protein 1, a transcription factor that binds to the M-CAT motif.
    Yockey CE; Smith G; Izumo S; Shimizu N
    J Biol Chem; 1996 Feb; 271(7):3727-36. PubMed ID: 8631987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements.
    Nakayama M; Stauffer J; Cheng J; Banerjee-Basu S; Wawrousek E; Buonanno A
    Mol Cell Biol; 1996 May; 16(5):2408-17. PubMed ID: 8628309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice.
    Banerjee-Basu S; Buonanno A
    Mol Cell Biol; 1993 Nov; 13(11):7019-28. PubMed ID: 8413291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription enhancer factor 1 interacts with a basic helix-loop-helix zipper protein, Max, for positive regulation of cardiac alpha-myosin heavy-chain gene expression.
    Gupta MP; Amin CS; Gupta M; Hay N; Zak R
    Mol Cell Biol; 1997 Jul; 17(7):3924-36. PubMed ID: 9199327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An E-box/M-CAT hybrid motif and cognate binding protein(s) regulate the basal muscle-specific and cAMP-inducible expression of the rat cardiac alpha-myosin heavy chain gene.
    Gupta MP; Gupta M; Zak R
    J Biol Chem; 1994 Nov; 269(47):29677-87. PubMed ID: 7961957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter.
    Mar JH; Ordahl CP
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6404-8. PubMed ID: 3413104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct factor-binding DNA elements in cardiac myosin light chain 2 gene are essential for repression of its expression in skeletal muscle. Isolation of a cDNA clone for repressor protein Nished.
    Dhar M; Mascareno EM; Siddiqui MA
    J Biol Chem; 1997 Jul; 272(29):18490-7. PubMed ID: 9218494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel site in the muscle creatine kinase enhancer is required for expression in skeletal but not cardiac muscle.
    Fabre-Suver C; Hauschka SD
    J Biol Chem; 1996 Mar; 271(9):4646-52. PubMed ID: 8617727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer.
    Yutzey KE; Konieczny SF
    Nucleic Acids Res; 1992 Oct; 20(19):5105-13. PubMed ID: 1329039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular regulation of the human IL-3 gene: inducible T cell-restricted expression requires intact AP-1 and Elf-1 nuclear protein binding sites.
    Gottschalk LR; Giannola DM; Emerson SG
    J Exp Med; 1993 Nov; 178(5):1681-92. PubMed ID: 8228815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both a ubiquitous factor mTEF-1 and a distinct muscle-specific factor bind to the M-CAT motif of the myosin heavy chain beta gene.
    Shimizu N; Smith G; Izumo S
    Nucleic Acids Res; 1993 Aug; 21(17):4103-10. PubMed ID: 8396764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. trans activation of the simian virus 40 late promoter by large T antigen requires binding sites for the cellular transcription factor TEF-1.
    Casaz P; Sundseth R; Hansen U
    J Virol; 1991 Dec; 65(12):6535-43. PubMed ID: 1658359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.